
1/2

September 28, 2005

Avoiding double-destruction when an object is released
devblogs.microsoft.com/oldnewthing/20050928-10

Raymond Chen

As we saw last time,
trying to do too much in one’s destructor can lead to an object
being

destroyed twice.
The standard way to work around this problem is to set an artificial

reference count during destruction.

class MyObject : public IUnknown

{

…
ULONG Release()

{
 LONG cRef = InterlockedDecrement(&m_cRef);

 if (cRef == 0) {

 m_cRef = DESTRUCTOR_REFCOUNT;

 delete this;

 }

 return cRef;

}
…
private:

}
enum { DESTRUCTOR_REFCOUNT = 42 };

~MyObject()

{
 if (m_fNeedSave) Save();

 assert(m_cRef == DESTRUCTOR_REFCOUNT);

}
};

If you have a common implementation of IUnknown ,
you can set the reference count to

DESTRUCTOR_REFCOUNT
in your implementation of IUnknown::Release like we
did here,

and assert that the value is correct in your implementation’s
destructor.
Since C++ runs base

class destructors after derived class destructors,
your base class destructor will check the

reference count after the
derived class has done its cleanup.

By setting the reference count to an artificial non-zero value,
any AddRef() and

Release() calls that occur will not trigger
a duplicate destruction (assuming of course that

nobody in
the destructor path has a bug that causes them to over-release).
The assertion at

https://devblogs.microsoft.com/oldnewthing/20050928-10/?p=34013
http://blogs.msdn.com/oldnewthing/archive/2005/09/27/474384.aspx

2/2

the end ensures that no new references to the
object have been created during destruction.

This is really more of a workaround than a rock-solid solution,
because it assumes that no

functions called during the destruction
sequence retain a reference to the object beyond the

function’s
return.
This is in general not something you can assume about COM.
In general, a

method is free to call
 AddRef and hang onto a pointer to an object
in order to complete the

requested operation later.
Some methods
(such as
the IPersistPropertyBag::Load

method)
explicitly forbid such behavior, but these types of methods are
more the exception

rather than the rule.

Exercise:
Why is it safe to perform a simple assignment
 m_cRef =

DESTRUCTOR_REFCOUNT instead of
the more complicated

InterlockedExchangeAdd(&m_cRef, DESTRUCTOR_REFCOUNT) ?

Raymond Chen

Follow

http://msdn.microsoft.com/workshop/components/com/reference/ifaces/ipersistpropertybag/load.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

