
1/2

September 27, 2005

COM object destructors are very sensitive functions
devblogs.microsoft.com/oldnewthing/20050927-13

Raymond Chen

If you try to do too much, you can find yourself in trouble.

For example, if your destructor hands a reference to itself
to other functions,
those functions

might decide to call your
 IUnknown::AddRef
and
 IUnknown::Release
methods as part of

their internal operations.
Consider:

ULONG MyObject::Release()

{

LONG cRef = InterlockedDecrement(&m_cRef);

if (cRef == 0) {

 delete this;

}
return cRef;

}

MyObject::~MyObject()

{

if (m_fNeedSave) Save();

}

That doesn’t look so scary now does it?
The object saves itself when destructed.

However, the Save method might do something
like this:

HRESULT MyObject::Save()

{

CComPtr<IStream> spstm;

HRESULT hr = GetSaveStream(&spstm);

if (SUCCEEDED(hr)) {

 CComQIPtr<IObjectWithSite, &IID_IObjectWithSite> spows(spstm);

 if (spows) spows->SetSite(this);

 hr = SaveToStream(spstm);

 if (spows) spows->SetSite(NULL);

}
return hr;

}

https://devblogs.microsoft.com/oldnewthing/20050927-13/?p=34023

2/2

On its own, this looks pretty normal.
Get a stream and save to it,
setting ourselves as its site

in case the stream
wants to get additional information about the object
as part of the saving

process.

But in conjunction with the fact that we call it from
our destructor, we have a recipe for

disaster.
Watch what happens when the last reference is released.

The Release() method decrements the reference
count to zero and performs a

delete this .

The destructor attempts to save the object.

The Save() method obtains the save stream
and sets itself as the site. This

increments the reference
count from zero to one.

The SaveToStream() method saves the object.

The Save() method clears the site on the stream.
This decrements the reference

count from one back to zero.

The Release() method therefore attempts to destructor
the object a second time.

Destructing the object a second time tends to result in widespread
mayhem.
If you’re lucky,

you’ll crash inside the recursive destruction
and identify the source,
but if you’re not lucky,

the resulting heap corruption won’t go
detected for quite some time, at which point you’ll just

be left
scratching your head.

Therefore, at a minimum, you should assert in your AddRef()
method that you aren’t

incrementing the reference count from zero.

ULONG MyObject::AddRef()

{

assert(m_cRef != 0);

return InterlockedIncrement(&m_cRef);

}

This would catch the “case of the mysteriously double-destructed
object” much earlier in the

game, giving you a fighting chance
of identifying the problem.
But once you’ve isolated the

problem,
what can you do about it?
We’ll look into that next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

