
1/2

September 12, 2005

Understanding the consequences of WAIT_ABANDONED
devblogs.microsoft.com/oldnewthing/20050912-14

Raymond Chen

One of the important distinctions between mutexes and the other
synchronization objects is

that mutexes have owners.
If the thread that owns a mutex exits without releasing the mutex,

the mutex is automatically released on the thread’s behalf.

But if this happens, you’re in big trouble.

One thing many people gloss over is the
 WAIT_ABANDONED return value
from the

synchronization functions such as
WaitForSingleObject.
They typically treat this as a

successful wait,
because it does mean that the object was obtained,
but it also tells you that

the previous owner left the
mutex abandoned and that the system had to release it on
the

owner’s behalf.

Why are you in big trouble when this happens?

Presumably, you created that mutex to protect multiple threads
from accessing a shared

object while it is an unstable state.
Code enters the mutex, then starts manipulating the

object,
temporarily making it unstable, but eventually restabilizing
it and then releasing the

mutex so that the next person can access
the object.

For example, you might have code that manages an
anchored doubly-linked list
in shared

memory that goes like this:

void MyClass::ReverseList()

{

WaitForSingleObject(hMutex, INFINITE);

int i = 0; // anchor

do {

 int next = m_items[i].m_next;

 m_items[i].m_next = m_items[i].m_prev;

 m_items[i].m_prev = next;

 i = next;

} while (i != 0);

ReleaseMutex(hMutex);

}

https://devblogs.microsoft.com/oldnewthing/20050912-14/?p=34253
http://msdn.microsoft.com/library/en-us/dllproc/base/waitforsingleobject.asp

2/2

There is nothing particularly exciting going on.
Basic stuff, right?

But what if the program crashes while holding the mutex?
(If you believe that your programs

are bug-free,
consider the possiblity that the program is running
over the network and the

network goes down, leading
to an in-page exception.
Or simply that the user went to Task

Manager
and terminated your program while this function is running.)

In that case, the mutex is automatically released
by the operating system,
leaving the linked

list in a corrupted state.
The next program to claim
the mutex will receive WAIT_ABANDONED

as the
status code.
If you ignore that status code,
you end up operating on a corrupted linked

list.
Depending on how that linked list is used, it may
result in a resource leak or the system

creating an
unintended second copy of something, or perhaps even a crash.
The unfortunate

demise of one program causes other programs
to start behaving strangely.

Then again, the question remains,
“What do you do, then, if you get WAIT_ABANDONED ?”
The

answer is, “Good question.”

You might try to repair the corruption, if you keep enough
auxiliary information around to

recover a consistent state.
You might even design your data structures to be transactional,
so

that the death of a thread manipulating the data structures
does not leave them in a

corrupted state.
Or you might just decide that since things are corrupted,
you should throw

away everything and start over,
losing the state of work in progress, but at least allowing
new

work to proceed unhindered.

Or you might simply choose to ignore the error and continue
onwards with a corrupt data

structure, hoping that whatever
went wrong won’t result in cascade failures down the line.

This is what most people do, though usually without even being
aware that they’re doing it.

And it’s really hard to debug the crashes that result from this
approach.

Exercise:
Why did we use indices instead of pointers in our
linked list data structure?

[Raymond is currently away; this message was pre-recorded.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

