
1/2

September 1, 2005

More undocumented behavior and the people who rely
on it: Output buffers

devblogs.microsoft.com/oldnewthing/20050901-17

Raymond Chen

For functions that return data,
the contents of the output buffer if the function fails are

typically
left unspecified.
If the function fails, callers should assume nothing about the

contents.

But that doesn’t stop them from assuming it anyway.

I was reminded of this topic after reading
Michael Kaplan’s story of one customer who

wanted the output buffer
contents to be defined even on failure.
The reason the buffer is left

untouched is because many
programs assume that the buffer is unchanged on failure,
even

though there is no documentation supporting this behavior.

Here’s one example of code I’ve seen (reconstructed) that relies
on the output buffer being

left unchanged:

HKEY hk = hkFallback;

RegOpenKeyEx(…, &hk);

RegQueryValue(hk, …);

if (hk != hkFallback) RegCloseKey(hk);

This code fragment starts out with a fallback key then tries
to open a “better” key,
assuming

that if the open fails,
the contents of the hk variable will be left unchanged
and therefore

will continue to have the original fallback value.
This behavior is not guaranteed by the

specification for
the RegOpenKeyEx function, but that doesn’t stop people
from relying on it

anyway.

Here’s another example
from actual shipping code.
Observe that the CRegistry::Restore

method is documented
as “If the specified key does not exist, the value of ‘Value’ is

unchanged.”
(Let’s ignore for now that the documentation uses registry
terminology

incorrectly; the parameter specified is a value name,
not a key name.)
If you look at what the

code actually does,
it loads the buffer with the original value of “Value”,
then calls
the

RegQueryValueEx function twice
and ignores the return value both times!
The real work

happens in the CRegistry::RestoreDWORD
function.
At the first call, observe that it

https://devblogs.microsoft.com/oldnewthing/20050901-17/?p=34343
http://blogs.msdn.com/michkap/archive/2005/03/06/386194.aspx
http://msdn.microsoft.com/library/en-us/sysinfo/base/regopenkeyex.asp
http://cvs.sourceforge.net/viewcvs.py/cdexos/cdexos/Registry.cpp?rev=1.3
http://msdn.microsoft.com/library/en-us/sysinfo/base/regqueryvalueex.asp

2/2

initializes
the type variable, then calls
the RegQueryValueEx function and assumes that
it

does not modify the
 &type parameter on failure.
Next, it calls
the RegQueryValueEx

function a second time,
this time assuming that the output buffer
 &Value remains

unchanged in the event of failure,
because that’s what CRegistry::Restore expects.

I don’t mean to pick on that code sample.
It was merely a convenient example
of the sorts of

abuses that Win32 needs to sustain
on a regular basis for the sake of compatibility.
Because,

after all, people buy computers in order to
run programs on them.

One significant exception to the “output buffers are undefined on failure”
rule is output

buffers returned by COM interface methods.
COM rules are that output buffers are always

initialized, even on failure.
This is necessary to ensure that the marshaller doesn’t crash.
For

example, the last parameter to the IUnknown::QueryInterface method
must be set to NULL

on failure.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

