
1/3

August 12, 2005

Adding a lookup control to the dictionary: Searching
Pinyin

devblogs.microsoft.com/oldnewthing/20050812-10

Raymond Chen

Finally we start searching.
For now, the search algorithm is going to be very simple:
The

string you type into the edit control will be treated as the
start of a Pinyin word or phrase.

We’ll make it fancier later.

Here is where a lot of the groundwork
(some of which I called out explicitly
and some of

which I slipped in without calling attention to it)
starts to pay off.

Up until now, the items in the listview came directly from the
dictionary.
Of course, when a

word is being looked up, we want to reduce the
list to those that match the word or phrase

being searched for.
We will introduce a new member m_vMatch which is
a vector of pointers

to the items we actually want to display.

class RootWindow : public Window

{

…
// const DictionaryEntry& Item(int i) { return m_dict.Item(i); }

// int Length() { return m_dict.Length(); }

const DictionaryEntry& Item(int i) { return *m_vMatch[i]; }

int Length() { return m_vMatch.size(); }

…
void OnCommand(UINT id, UINT cmd);

void Refilter();

…
private:

…
vector<const DictionaryEntry*> m_vMatch;

};

By tweaking our Item and Length member
functions, we can now render out of the list of

matches instead of
out of the entire dictionary.

https://devblogs.microsoft.com/oldnewthing/20050812-10/?p=34593
http://blogs.msdn.com/oldnewthing/archive/2005/05/19/420038.aspx

2/3

LRESULT RootWindow::OnCreate()

{

…
// ListView_SetItemCount(m_hwndLV, Length());

…
m_hwndLastFocus = m_hwndEdit;

m_vMatch.reserve(m_dict.Length());

Refilter();

return 0;

}

Since the list of matches is at most the number of words in the
dictionary, we can reserve that

size up front and avoid needless
reallocations.
Once we’ve done that, we call our new

Refilter method
to compute the matches (which populates the listview).
It is Refilter

that will do the
 ListView_SetItemCount , so there’s no point in us
doing it here.

void RootWindow::OnCommand(UINT id, UINT cmd)

{

switch (id) {

case IDC_EDIT:

 switch (cmd) {

 case EN_CHANGE:

 Refilter();

 }

 break;

}
}

 // add to RootWindow::HandleMessage()

 case WM_COMMAND:

 OnCommand(GET_WM_COMMAND_ID(wParam, lParam),

 GET_WM_COMMAND_CMD(wParam, lParam));

 break;

We also rebuild the list of matches if the user makes a change
to the edit control.
This means

that there is no need for a “Search” button.
The listview auto-filters as you type.

3/3

void RootWindow::Refilter()

{

WCHAR szBuf[256];

DWORD cchBuf = GetWindowText(m_hwndEdit, szBuf, 256);

m_vMatch.clear();

for (int i = 0; i < m_dict.Length(); i++) {

 const DictionaryEntry& de = m_dict.Item(i);

 if (StrCmpNIW(de.m_pszPinyin, szBuf, cchBuf) == 0) {

 m_vMatch.push_back(&de);

 }

}
ListView_SetItemCount(m_hwndLV, Length());

ListView_SetItemState(m_hwndLV, -1, 0, LVIS_SELECTED);

InvalidateRect(m_hwndLV, NULL, FALSE);

}

Building the list of matches is rather simple and anticlimactic.
We get the string the user

typed into the edit control and
walk through all the words in the dictionary, seeing if the

Pinyin begins with the user’s typing.
If so, then we add it to the match vector.

Once the match list is built up, we tell the listview
how many we found, clear the selection (so

that the selection
doesn’t appear to move around from one word to another
as items are

filtered in or out), and invalidate the client
rectangle to trigger a repaint.

That’s all there is to it.
If you run this program and start typing into the edit control,
you’ll

see the list of words in the listview grow and shrink as
you type.

That’s all for this month.
Next month, we’ll work on expanding the scope of the search.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

