
1/3

August 8, 2005

The dangers of playing focus games when handling a
WM_KILLFOCUS message

devblogs.microsoft.com/oldnewthing/20050808-16

Raymond Chen

I had noted last year that
WM_KILLFOCUS is the wrong time to do field validation.
Here’s

another example of how messing with the focus during a
 WM_KILLFOCUS message can create

confusion.

Consider an edit control that displays feedback via a balloon tip.
For example, password edit

controls often warn you if you’re typing
your password while CapsLock is in effect.
One of the

things you probably want to do is to remove the balloon
tip if the user moves focus to another

control, since there’s no
point telling the user about a problem with something they aren’t

using.
You might be tempted to subclass the edit control and do
something like this:

LRESULT CALLBACK EditSubclass(

 HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 switch (uMsg) {

 …

 case WM_KILLFOCUS:

 if (hwndBalloonTip) {

 DestroyWindow(hwndBalloonTip);

 hwndBalloonTip = NULL;

 }

 break;

 …

 }

 return CallWindowProc(prevWndProc, hwnd, uMsg, wParam, lParam);

}

When you give this code a shot, it works great…
unless the user clicks on the balloon tip

itself
the edit control’s caret (the blinking insertion point thingie) disappears.
What

happened?

What happened is that you gummed up the focus change process by
destroying the window

that focus was going to!
The focus change process goes like this:

Put focus on new focus window.

https://devblogs.microsoft.com/oldnewthing/20050808-16/?p=34673
http://blogs.msdn.com/oldnewthing/archive/2004/04/19/115912.aspx

2/3

Send WM_KILLFOCUS to old focus window (if any).

Send WM_SETFOCUS to new focus window (if any).

But in the second step, we destroyed the new focus window.
When the focus window is

destroyed, the window manager tries to find a new
focus window, and it settles upon the edit

control itself.
This starts a recursive focus change cycle,
telling the edit control that it now has

focus again.

Let’s look at the flow in this nested focus change scenario
when the user clicks on the tooltip

window.

Put focus on tooltip.

Send WM_KILLFOCUS to edit control.

EditSubclass destroys the tooltip.

Window manager puts focus on the edit control.

Nobody to send WM_KILLFOCUS to.

Send WM_SETFOCUS to edit control.

EditSubclass passes WM_SETFOCUS to the original window

procedure.

EditSubclass passes WM_KILLFOCUS to the original window procedure.

Send WM_SETFOCUS to tooltip – fails (tooltip was destroyed).

Do you see the problem yet?

Look at the message traffic as it reaches the original edit control window
procedure:

WM_SETFOCUS (from the nested focus change)

WM_KILLFOCUS (from the original focus change)

As far as the edit control is concerned, it gained focus then lost it.
Therefore, no caret, since

the edit control displays a caret only when
it has focus, and your recursive focus changing has

resulted in the
edit control thinking it doesn’t have focus even though it does.

There are many ways out of this mess.

First, notice that you don’t need to subclass the edit control;
you can just react to the

EN_KILLFOCUS notification.
Second, you can respond to the EN_KILLFOCUS by
posting

yourself a message and destroying the tooltip on receipt
of that posted message.
By doing it

via a posted message,
you avoid the recursive focus change since your work is now being

done outside a focus change cycle.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

