
1/3

August 2, 2005

Rendering menu glyphs is slightly trickier
devblogs.microsoft.com/oldnewthing/20050802-13

Raymond Chen

Last time, we saw how to draw themed and unthemed radio buttons,
and I mentioned that

menu glyphs are trickier.
They’re trickier because they are provided as raw monochrome

bitmaps
instead of fully-formed color-coordinated bitmaps.
First, let’s do it wrong in order to

see what we get.
Then we’ll try to fix it.
Start with a clean
new scratch program

class RootWindow : public Window

{

…
protected:

void PaintContent(PAINTSTRUCT *pps);

BOOL WinRegisterClass(WNDCLASS *pwc)

{
 pwc->hbrBackground = (HBRUSH)(COLOR_MENU + 1);

 return __super::WinRegisterClass(pwc);

}
…
};

void RootWindow::PaintContent(PAINTSTRUCT *pps)

{

int cxCheck = GetSystemMetrics(SM_CXMENUCHECK);

int cyCheck = GetSystemMetrics(SM_CYMENUCHECK);

RECT rc = { 0, 0, cxCheck, cyCheck };

DrawFrameControl(pps->hdc, &rc, DFC_MENU, DFCS_MENUCHECK);

}

This naïvely uses
the DrawFrameControl function
to draw the menu check mark directly into

the paint DC.
If you are running with the default Windows XP theme you
probably won’t

notice anything amiss, but switch to the Windows Classic
theme and you’ll see that the check

mark is drawn in black and white
even though the Classic menu background color is gray.

The reason for this is called out in the documentation for
 DrawFrameControl :

https://devblogs.microsoft.com/oldnewthing/20050802-13/?p=34743
http://blogs.msdn.com/oldnewthing/archive/2005/08/01/445998.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/04/22/410773.aspx
http://msdn.microsoft.com/library/en-us/gdi/pantdraw_4b3g.asp

2/3

If uType is either DFC_MENU or DFC_BUTTON and uState is not DFCS_BUTTONPUSH,
the frame control is a black-on-white mask
(that is, a black frame control on a white
background).

All we get from DrawFrameControl is a monochrome mask.
It is our responsibility to

colorize it as necessary.
To do this, we draw the mask into a monochrome bitmap, and then

use
the BitBlt function
to colorize it.
Recall that when blitting from a monochrome bitmap

to a color bitmap,
the color black in the source bitmap
becomes the destination DC’s text

color,
and the color white in the source bitmap
becomes the destination DC’s background

color.

void RootWindow::PaintContent(PAINTSTRUCT *pps)

{

HDC hdcMem = CreateCompatibleDC(pps->hdc);

if (hdcMem) {

 int cxCheck = GetSystemMetrics(SM_CXMENUCHECK);

 int cyCheck = GetSystemMetrics(SM_CYMENUCHECK);

 HBITMAP hbmMono = CreateBitmap(cxCheck, cyCheck, 1, 1, NULL);

 if (hbmMono) {

 HBITMAP hbmPrev = SelectBitmap(hdcMem, hbmMono);

 if (hbmPrev) {

 RECT rc = { 0, 0, cxCheck, cyCheck };

 DrawFrameControl(hdcMem, &rc, DFC_MENU, DFCS_MENUCHECK);

 COLORREF clrTextPrev = SetTextColor(pps->hdc,

 GetSysColor(COLOR_MENUTEXT));

 COLORREF clrBkPrev = SetBkColor(pps->hdc,

 GetSysColor(COLOR_MENU));

 BitBlt(pps->hdc, 0, 0, cxCheck, cyCheck,

 hdcMem, 0, 0, SRCCOPY);

 SetBkColor(pps->hdc, clrBkPrev);

 SetTextColor(pps->hdc, clrTextPrev);

 SelectBitmap(hdcMem, hbmPrev);

 }

 DeleteObject(hbmMono);

 }

 DeleteDC(hdcMem);

}
}

The key steps here are
(1) drawing into a temporary monochrome bitmap to generate the

mask,
(2) setting the text and background colors of the destination DC,
(3) using BitBlt to

do the color mapping.
The rest of the function is just boring bookkeeping.

Observe that the checkmark’s colors now match the system menu colors
because we set them

as the text and background colors for the
mono-to-color blit.

http://msdn.microsoft.com/library/en-us/gdi/bitmaps_0fzo.asp

3/3

Armed with this knowledge,
perhaps you can help this person,
who is trying to draw the

menu check marks transparently.
I can think of two different solutions off the top of my

head.

Raymond Chen

Follow

http://groups-beta.google.com/group/comp.os.ms-windows.programmer.win32/msg/8e548d08f7261932
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

