
1/4

July 27, 2005

When the normal window destruction messages are
thrown for a loop

devblogs.microsoft.com/oldnewthing/20050727-16

Raymond Chen

Last time,
I alluded to weirdness that can result in
the normal cycle of destruction messages

being thrown out of kilter.

Commenter Adrian noted that the WM_GETMINMAXINFO message
arrives before WM_NCCREATE

for top-level windows.
This is indeed unfortunate but (mistake or not)
it’s been that way for

over a decade and changing it now
would introduce serious compatibility risk.

But that’s not the weirdness I had in mind.

Some time ago I was helping to debug a problem with
a program that was using
the ListView

control,
and the problem was traced to the program subclassing the
ListView control and,

through a complicated chain of
C++ objects, ending up attempting to destroy the ListView

control while it was already in the process of being destroyed.

Let’s take
our new scratch program
and illustrate what happens in a more obvious manner.

https://devblogs.microsoft.com/oldnewthing/20050727-16/?p=34793
http://blogs.msdn.com/oldnewthing/archive/2004/07/26/443384.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/07/26/443384.aspx#443414
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/listview/listview.asp

2/4

class RootWindow : public Window

{

public:

RootWindow() : m_cRecurse(0) { }

…
private:

void CheckWindow(LPCTSTR pszMessage) {

 OutputDebugString(pszMessage);

 if (IsWindow(m_hwnd)) {

 OutputDebugString(TEXT(” – window still exists\r\n”));

 } else {

 OutputDebugString(TEXT(” – window no longer exists\r\n”));

 }

}
private:

HWND m_hwndChild;

UINT m_cRecurse;

…
};

LRESULT RootWindow::HandleMessage(

 UINT uMsg, WPARAM wParam, LPARAM lParam)

{

…
 case WM_NCDESTROY:

 CheckWindow(TEXT(“WM_NCDESTROY received”));

 if (m_cRecurse < 2) {

 m_cRecurse++;

 CheckWindow(TEXT(“WM_NCDESTROY recursing”));

 DestroyWindow(m_hwnd);

 CheckWindow(TEXT(“WM_NCDESTROY recursion returned”));

 }

 PostQuitMessage(0);

 break;

 case WM_DESTROY:

 CheckWindow(TEXT(“WM_DESTROY received”));

 if (m_cRecurse < 1) {

 m_cRecurse++;

 CheckWindow(TEXT(“WM_DESTROY recursing”));

 DestroyWindow(m_hwnd);

 CheckWindow(TEXT(“WM_DESTROY recursion returned”));

 }

 break;

 …

}

We add some debug traces to make it easier to see what is going on.
Run the program, then

close it, and watch what happens.

3/4

WM_DESTROY received – window still exists

WM_DESTROY recursing – window still exists

WM_DESTROY received – window still exists

WM_NCDESTROY received – window still exists

WM_NCDESTROY recursing – window still exists

WM_DESTROY received – window still exists

WM_NCDESTROY received – window still exists

WM_NCDESTROY recursion returned – window no longer exists

Access violation – code c0000005

eax=00267160 ebx=00000000 ecx=00263f40 edx=7c90eb94 esi=00263f40 edi=00000000

eip=0003008f esp=0006f72c ebp=0006f73c iopl=0 nv up ei ng nz na pe cy

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000283

0003008f ?? ???

Yikes! What happened?

When you clicked the “X” button, this started the window destruction
process.
As is to be

expected,
the window received a WM_DESTROY message,
but the program responds to this by

attempting to destroy the window
again.
Notice that IsWindow reported that the window

still
exists at this point.
This is true: The window does still exist,
although it happens to be in

the process of being destroyed.
In the original scenario, the code that destroyed the window

went
something like

if (IsWindow(hwndToDestroy)) {

DestroyWindow(hwndToDestroy);

}

At any rate, the recursive call to DestroyWindow
caused a new window destruction cycle to

begin,
nested inside the first one.
This generates a new WM_DESTROY message,
followed by a

WM_NCDESTROY message.
(Notice that this window has now received
two WM_DESTROY

messages!)
Our bizarro code then makes yet another
recursive call to DestroyWindow ,

which starts a third window destruction cycle.
The window gets its third WM_DESTROY

message,
then its second WM_NCDESTROY message, at which point
the second recursive call

to DestroyWindow returns.
At this point, the window no longer exists:
 DestroyWindow

has destroyed the window.

And that’s why we crash.
The base Window class
handles the WM_NCDESTROY message by

destroying the
instance variables associated with the window.
Therefore, when the innermost

DestroyWindow
returns, the instance variables have been thrown away.
Execution then

resumes with the base class’s
 WM_NCDESTROY handler, which tries to access
the instance

variables and gets heap garbage,
and then makes the even worse no-no of freeing memory

that
is already freed, thereby corrupting the heap.
It is here that we crash, attempting to call

the virtual
destructor on an already-destructed object.

I intentionally chose to use the new scratch program
(which uses C++ objects) instead of the

classic scratch program
(which uses global variables) to highlight the fact that
after the

recursive DestroyWindow call,
all the instance variables are gone and you are operating on

4/4

freed memory.

Moral of the story:
Understand your window lifetimes
and don’t destroy a window that you

know already to be
in the process of destruction.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

