
1/4

July 22, 2005

The importance of passing the
WT_EXECUTELONGFUNCTION flag to
QueueUserWorkItem

devblogs.microsoft.com/oldnewthing/20050722-15

Raymond Chen

One of the flags to
the QueueUserWorkItem function
is
 WT_EXECUTELONGFUNCTION .
The

documentation for that flag reads

The callback function can perform a long wait.
This flag helps the system to decide if it should
create a new thread.

As noted in the documentation, the
thread pool
uses this flag to decide whether
it should

create a new thread or wait for an existing work item to finish.
If all the current thread pool

threads are busy running work items and there
is another work item to dispatch,
it will tend

to wait for one of the existing work items to complete
if they are “short”,
because the

expectation is that some work item will finish quickly
and its thread will become available to

run a new work item.
On the other hand, if the work items are marked

WT_EXECUTELONGFUNCTION ,
then the thread pool
knows that waiting for the running work

item to complete is
not going to be very productive, so it is more likely to create
a new thread.

If you fail to mark a long work item with the
 WT_EXECUTELONGFUNCTION flag,
then the

thread pool ends up waiting for that work item to
complete, when it really should be kicking

off a new thread.
Eventually, the thread pool gets impatient and figures out that
you lied to it,

and it creates a new thread anyway.
But it often takes a while before the thread pool realizes

that it’s been waiting in vain.

Let’s illustrate this with a simple console program.

https://devblogs.microsoft.com/oldnewthing/20050722-15/?p=34843
http://msdn.microsoft.com/library/en-us/dllproc/base/queueuserworkitem.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/thread_pooling.asp

2/4

#include <windows.h>

#include <stdio.h>

DWORD g_dwLastTick;

void CALLBACK Tick(void *, BOOLEAN)

{

DWORD dwTick = GetTickCount();

printf(“%5d\n”, dwTick – g_dwLastTick);

}

DWORD CALLBACK Clog(void *)

{

Sleep(4000);

return 0;

}

int __cdecl

main(int argc, char* argv[])

{

g_dwLastTick = GetTickCount();

switch (argc) {

case 2: QueueUserWorkItem(Clog, NULL, 0); break;

case 3: QueueUserWorkItem(Clog, NULL, WT_EXECUTELONGFUNCTION); break;

}
HANDLE hTimer;

CreateTimerQueueTimer(&hTimer, NULL, Tick, NULL, 250, 250, 0);

Sleep(INFINITE);

return 0;

}

This program creates a periodic thread pool work item that fires
every 250ms, and which

merely prints how much time has elapsed since
the timer was started.
As a baseline, run the

program with no parameters, and observe that
the callbacks occur at roughly 250ms

intervals, as expected.

 251

 501

 751

1012

^C

Next, run the program with a single command line parameter.
This causes the “case 2” to be

taken, where the “Clog” work item
is queued. The “Clog” does what its names does: It clogs

up the
work item queue by taking a long time (four seconds) to complete.
Notice that the first

callback doesn’t occur for a whole
second.

3/4

1001

1011

1021

1021

1252

1502

1752

^C

That’s because we queued the “Clog” work item without the
 WT_EXECUTELONGFUNCTION flag.

In other words, we told the thread pool,
“Oh, don’t worry about this guy, he’ll be finished

soon.”
The thread pool wanted to run the Tick event,
and since the Clog work item was

marked as “fast”,
the thread pool decided to wait for it and recycle its thread
rather than

create a new one.
After about a second,
the thread pool got impatient and spun up a new

thread to
service the now-long-overdue Tick events.

Notice that as soon as the first Tick event was processed,
three more were fired in rapid

succession.
That’s because the thread pool realized that it had fallen
four events behind

(thanks to the clog) and had to fire
the next three immediately just to clear its backlog.
The

fifth and subsequent events fire roughly on time
because the thread pool has figured out that

the Clog really
is a clog and should be treated as a long-running event.

Finally, run the program with two command line parameters.
This causes the “case 3” to be

taken, where we queue up the Clog
but also pass the WT_EXECUTELONGFUNCTION flag.

 251

 511

 761

1012

^C

Notice that with this hint, the thread pool no longer gets
fooled by the Clog and knows to spin

up a new thread to handle
the Tick events.

Moral of the story:
If you’re going to go wading into the thread pool,
make sure you play

friendly with other kids and let the
thread pool know ahead of time whether
you’re going to

take a long time.
This allows the thread pool to keep the number of worker
threads low (thus

reaping the benefits of thread pooling)
while still creating enough threads to keep the events

flowing
smoothly.

Exercise: What are the consequences to the thread pool if
you create a thread pool timer

whose callback takes longer
to complete than its timer period?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

