
1/3

July 13, 2005

Converting from traditional to simplified Chinese, part 3:
Highlighting differences

devblogs.microsoft.com/oldnewthing/20050713-12

Raymond Chen

One of the things that is interesting to me as a student of the
Chinese languages is to

recognize where the traditional and
simplified Chinese scripts differ.
Since this is my

program, I’m going to hard-code the color for
simplified Chinese script: maroon.

To accomplish the highlighting, we take advantage of listview’s
custom-draw feature.

Custom-draw allows you to make minor changes to the way items
are displayed on the

screen.
It’s a middle ground between having listview do all the work
(via default drawing

behavior) and having the program do all
the work (via owner-draw).

The custom-draw cycle for shell common controls consists of
series of
NM_CUSTOMDRAW

notifications, starting with
the most general and getting more specific.
The reason for the

break-down is multi-fold.
First, it allows the listview control to short-circuit a portion
of

custom-draw behavior if the parent window does not indicate
that it wishes to customize a

particular behavior.
This reduces message traffic and improves performance when large

numbers of items are being drawn.
Second, it allows the parent window to target its

customizations
to the drawing stages it is interested in.

Listviews are peculiar among the shell common controls in that
its items sometimes (but not

always) have sub-items.
This complicates the drawing process since it requires listview
to

accomodate both styles:
large icon view does not use sub-items, but report view does.
To

address this, the CDDS_ITEMPREPAINT
stage is entered when an item is about to paint,
and

any changes made by the parent window are considered to
be effective for the entire item.
If

you want to make changes on a per-subitem basis,
you have to respond to

CDDS_ITEMPREPAINT | CDDS_SUBITEM
and set your properties (or reset them if you want

to return to the
default) for that sub-item.

With those preliminary remarks settled, we can dive in.

https://devblogs.microsoft.com/oldnewthing/20050713-12/?p=34953
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/custdraw/custdraw.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/custdraw/messages/nm_customdraw.asp

2/3

class RootWindow : public Window

{

…
protected:

…
LRESULT OnLVCustomDraw(NMLVCUSTOMDRAW* pcd);

…
private:

HWND m_hwndLV;

COLORREF m_clrTextNormal;

Dictionary m_dict;

};

We declare our listview custom-draw handler as well as the member
variable in which we

remember the normal text color so that we can
reset it for columns we do not intend to

colorize.

LRESULT RootWindow::OnNotify(NMHDR *pnm)

{

switch (pnm->code) {

case LVN_GETDISPINFO:

 OnGetDispInfo(CONTAINING_RECORD(pnm, NMLVDISPINFO, hdr));

 break;

case NM_CUSTOMDRAW:

 if (pnm->hwndFrom == m_hwndLV) {

 return OnLVCustomDraw(CONTAINING_RECORD(

 CONTAINING_RECORD(pnm, NMCUSTOMDRAW, hdr),

 NMLVCUSTOMDRAW, nmcd));

 }

 break;

}
return 0;

}

If we receive a
NM_CUSTOMDRAW notification
from the listview control, we call our new

handler.
The multiple calls to
the CONTAINING_RECORD macro
are necessary because
the

NMHDR structure is nestled
two levels deep inside
the NMLVCUSTOMDRAW structure.

http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/custdraw/messages/nm_customdraw.asp
http://msdn.microsoft.com/library/en-us/kmarch/hh/kmarch/k106_6a249de6-d707-421c-9b91-96e1b14dc21b.xml.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/common/structures/nmhdr.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/listview/structures/nmlvcustomdraw.asp

3/3

LRESULT RootWindow::OnLVCustomDraw(NMLVCUSTOMDRAW* pcd)

{

switch (pcd->nmcd.dwDrawStage) {

case CDDS_PREPAINT: return CDRF_NOTIFYITEMDRAW;

case CDDS_ITEMPREPAINT:

 m_clrTextNormal = pcd->clrText;

 return CDRF_NOTIFYSUBITEMDRAW;

case CDDS_ITEMPREPAINT | CDDS_SUBITEM:

 pcd->clrText = m_clrTextNormal;

 if (pcd->iSubItem == COL_SIMP &&

 pcd->nmcd.dwItemSpec < (DWORD)Length()) {

 const DictionaryEntry& de = Item(pcd->nmcd.dwItemSpec);

 if (de.m_pszSimp) {

 pcd->clrText = RGB(0x80, 0x00, 0x00);

 }

 }

 break;

}
return CDRF_DODEFAULT;

}

During the CDDS_PREPAINT stage, we indicate our
desire to receive CDDS_ITEMPREPAINT

notifications.
During the CDDS_ITEMPREPAINT stage,
we save the normal text color and

indicate that we want to receive
sub-item notifications.
It is in the sub-item notification

CDDS_ITEMPREPAINT | CDDS_SUBITEM that the real work happens.

First, we reset the color to the default on the assumption that we
will not need to colorize this

column.
But if the column is the simplified Chinese column, if the
item number is valid, and

if the simplified Chinese is different
from the traditional Chinese, then we set the text color to

maroon.

That’s enough with the Chinese/English dictionary for now.
All this time, and we don’t even

have search capability yet!
We’ll work on that next month.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

