
1/3

July 11, 2005

Converting from traditional to simplified Chinese, part 1:
Loading the dictionary

devblogs.microsoft.com/oldnewthing/20050711-14

Raymond Chen

One step we had glossed over in our haste to get something
interesting on the screen in our

Chinese/English dictionary program
was the conversion from traditional to simplified

Chinese
characters.

The format of the hcutf8.txt file is a series of lines,
each of which is a UTF-8 encoded

string consisting of a simplified
Chinese character followed by its traditional equivalents.

Often, multiple traditional characters map to a single
simplified character.
Much more rarely

—only twice in our data set—multiple
simplified characters map to a single traditional

character.
Unfortunately, one of the cases is the common syllable
麼, which has two

simplifications, either
么 or 麽, the first of which is far more productive.
We’ll have to keep an

eye out for that one.

(Note also that in real life,
the mapping is more complicated
than a character-for-character

substitution,
but I’m willing to forego that level of complexity
because this is just for my

personal use and people will have
realized I’m not a native speaker long before I get caught

up
in language subtleties like that.)

One could try to work out a fancy data structure to represent
this mapping table compactly,

but it turns out that simple is
better here: an array of 65536 WCHAR s, each producing
the

corresponding simplification.
Most of the array will lie unused,
since the characters we are

interested in lie in the range
U+4E00 to U+9FFF.
Consequently, the active part of the table is

only about 40Kb,
which easily fits inside the L2 cache.

It is important to know when
a simple data structure is better than a complex one.

The hcutf8.txt file contains a lot of fluff that we
aren’t interested in. Let’s strip that out

ahead of time so that
we don’t waste our time parsing it at run-time.

https://devblogs.microsoft.com/oldnewthing/20050711-14/?p=34973
http://weblogs.asp.net/peterty/archive/2005/03/04/385063.aspx

2/3

#!perl

$_ = <> until /^# Start zi/; # ignore uninteresting characters

while (<>) {

s/\r//g;

next if length($_) == 7 &&

 substr($_, 0, 3) eq substr($_, 3, 3); # ignore NOPs

print;

}

Run the hcutf8.txt file through this filter to clean
it up a bit.

Now we can write our “traditional to simplified” dictionary.

class Trad2Simp

{

public:

Trad2Simp();

WCHAR Map(WCHAR chTrad) const { return _rgwch[chTrad]; }

private:

WCHAR _rgwch[65536]; // woohoo!

};

Trad2Simp::Trad2Simp()

{

ZeroMemory(_rgwch, sizeof(_rgwch));

MappedTextFile mtf(TEXT(“hcutf8.txt”));

const CHAR* pchBuf = mtf.Buffer();

const CHAR* pchEnd = pchBuf + mtf.Length();

while (pchBuf < pchEnd) {

 const CHAR* pchCR = std::find(pchBuf, pchEnd, ‘\r’);

 int cchBuf = (int)(pchCR – pchBuf);

 WCHAR szMap[80];

 DWORD cch = MultiByteToWideChar(CP_UTF8, 0, pchBuf, cchBuf,

 szMap, 80);

 if (cch > 1) {

 WCHAR chSimp = szMap[0];

 for (DWORD i = 1; i < cch; i++) {

 if (szMap[i] != chSimp) {

 _rgwch[szMap[i]] = chSimp;

 }

 }

 pchBuf = std::find(pchCR, pchEnd, ‘\n’) + 1;

 }

}
_rgwch[0x9EBC] = 0x4E48;

}

3/3

We read the file one line at a time, convert it from UTF-8,
and for each nontrivial mapping,

record it in our dictionary.
At the end, we do our little 么 special-case patch-up.

Next time, we’ll use this mapping table to generate simplified
Chinese characters into our

dictionary.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

