
1/2

May 31, 2005

Using modular arithmetic to avoid timing overflow
problems

devblogs.microsoft.com/oldnewthing/20050531-22

Raymond Chen

In an earlier article, I presented a simple way of avoiding timing overflows which seemed to

create a bit of confusion.
The short version: Given a starting time start, an ending time end

and an interval interval, the way to check whether the interval has elapsed is to use the

expression end - start >= interval . The naive expression end >= start +

interval suffers from integer overflow problems.
To simplify the discussion, let’s operate in

base-100 instead of base-2 . The same logic works, but I think operating in base-100 will be

easier to follow.
Base-100 means that we remember only the last two digits of any number.

Consider a starting time of start = 90 and an interval of interval = 10 . Using the

wrong expression yields end >= start + interval = 90+10 = 100 = 0 . In other words,

end >= 0 which is always true since end has the range 0...99 . As a result, the wrong

expression will think that the interval has expired prematurely.
Using the correct expression,

we have end - 90 >= 10 . Of the numbers 0..99 , the ones that give a difference less than

10 are 90 through 99 . Once end = 0 , the result is 0 - 90 = 10 , which correctly

indicates that 10 ticks have elapsed since 90 once the timer reaches 0.
You can work through

a similar mistake using start = 89 instead of start = 90 ; in this case, the wrong

expression becomes end >= start + interval = 89 + 10 = 99 , or in other words, end

>= 99 . This has the opposite problem from the previous case, namely that the expression

will fail to detect that the interval has expired once the timer rolls over.
But why does the

end - start expression work? It’s very simple: You just have to remember your rules of

arithmetic from elementary school.
 (x - c) - (y - c) = x - c - y + c = x - y In

other words, subtracting the same value from both terms of a difference does not affect the

final value. This rule applies even to modular arithmetic (because, as the mathematicians like

to say, the set of integers modulo n form an additive group).
This rule is useful because it lets

you delay the overflow as long as possible by subtracting the starting point from all your time

markers; it has no effect upon time intervals. Wouldn’t it be great if start = 0 ? Then the

overflow won’t happen for 100 ticks. Well, you can act “as if” the starting point were start

= 0 by simply subtracting start from all your time markers.
Those who prefer a graphical

view can think of time passing as the hands around a clock (which wraps around at 60

minutes, say). When you decide to record your start point, rotate the clock so that the “12”

precisely lines up with wherever the hand happens to be. You can now read off the elapsed

32

https://devblogs.microsoft.com/oldnewthing/20050531-22/?p=35493
http://blogs.msdn.com/oldnewthing/archive/2004/10/18/243925.aspx

2/2

time directly from your rotated clock. Rotating your clock is the same as subtracting (or

adding) a constant to all time markers.
Of course, this trick falls apart once you have to

measure time intervals that come close to the wraparound time of your timer. In our 100-tick

timer, for example, trying to measure the passage of 90 ticks is very difficult because there is

only a 10-tick window where the inequality is satisfied. If we fail to catch the timer during

that window, we miss it and have to wait another 90 ticks.

So don’t do that. In practical terms, this means that you shouldn’t use GetTickCount to

measure time intervals longer than 15 days.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

