
1/4

May 23, 2005

Why are DLLs unloaded in the "wrong" order?
devblogs.microsoft.com/oldnewthing/20050523-05

Raymond Chen

When a program starts or when a DLL is loaded,
the loader builds a dependency tree of all

the DLLs
referenced by that program/DLL, that DLL’s dependents, and so on.
It then

determines the correct order in which to initialize
those DLLs so that no DLL is initialized

until after all the
DLLs upon which it is dependent have been initialized.
(Of course, if you

have a circular dependency, then this falls apart.
And as you well know, calling
the

LoadLibrary function
or
the LoadLibraryEx function
from inside a DLL’s

DLL_PROCESS_ATTACH notification also messes up
these dependency computations.)

Similarly, when you unload a DLL or when the program terminates,
the de-initialization

occurs
so that a DLL is de-initialized after all its dependents.

But when you load a DLL manually,
crucial information is lost: Namely that the DLL that is

calling
 LoadLibrary depends on the DLL being loaded.
Consequently, if A.DLL manually

loads B.DLL, then there is no
guarantee that A.DLL will be unloaded before B.DLL.
This

means, for example, that code like the following is
not reliable:

https://devblogs.microsoft.com/oldnewthing/20050523-05/?p=35573
http://msdn.microsoft.com/library/en-us/dllproc/base/loadlibrary.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/loadlibraryex.asp

2/4

HSOMETHING g_hSomething;

typedef HSOMETHING (WINAPI* GETSOMETHING)(void);

typedef void (WINAPI* FREESOMETHING)(HSOMETHING);

GETSOMETHING GetSomething;

FREESOMETHING FreeSomething;

// Ignoring race conditions for expository purposes

void LoadB()

{

HINSTANCE hinstB = LoadLibrary(TEXT("B.DLL"));

if (hinstB) {

 GetSomething = (GETSOMETHING)

 GetProcAddress(hinstB, "GetSomething");

 FreeSomething = (FREESOMETHING)

 FreeProcAddress(hinstB, "FreeSomething");

}
}

// Ignoring race conditions for expository purposes

HSOMETHING CacheSomethingFromB()

{

if (!g_hSomething &&

 GetSomething && FreeSomething) {

 g_hSomething = GetSomething();

}
return g_hSomething;

}

BOOL CALLBACK DllMain(HINSTANCE hinst,

 DWORD dwReason, LPVOID lpReserved)

{

switch (dwReason) {

...

case DLL_PROCESS_DETACH:

 if (g_hSomething) {

 FreeSomething(g_hSomething); // oops

 }

 break;

}
return TRUE;

}

At the line marked “oops”, there is no guarantee that
 B.DLL is still in memory because

B.DLL
does not appear in the dependency list of A.DLL ,
even though there is a runtime-

generated dependency caused by
the call to LoadLibrary .

Why can’t the loader keep track of this dynamic dependency?
In other words
when A.DLL

calls LoadLibrary(TEXT("B.DLL")) ,
why can’t the loader automatically say “Okay, now

A.DLL depends
on B.DLL”?

First of all, because as I’ve noted before,
you can’t trust the return address.

http://blogs.msdn.com/oldnewthing/archive/2004/01/01/47042.aspx

3/4

Second, even if you could trust the return address,
you still can’t trust the return address.

Consider:

// A.DLL - same as before except for one line

void LoadB()

{

HINSTANCE hinstB = MiddleFunction(TEXT("B.DLL"));

if (hinstB) {

 GetSomething = (GETSOMETHING)

 GetProcAddress(hinstB, "GetSomething");

 FreeSomething = (FREESOMETHING)

 FreeProcAddress(hinstB, "FreeSomething");

}
}

// MIDDLE.DLL

HINSTANCE MiddleFunction(LPCTSTR pszDll)

{

return LoadLibrary(pszDll);

}

In this scenario, the load of B.DLL happens
not directly from A.DLL , but rather through

an intermediary (in this case, MiddleFunction).
Even if you could trust the return address,

the dependency
would be assigned to MIDDLE.DLL instead of
 A.DLL .

“What sort of crazy person would write a function like
 MiddleFunction ?”, you ask.
This

sort of intermediate function is common
in helper/wrapper libraries
or to
provide additional

lifetime management functionality
(although it doesn’t do it any more, though it used to).

Third, there is the case of
the GetModuleHandle function.

void UseBIfAvailable()

{

HINSTANCE hinstB = GetModuleHandle(TEXT("B"));

if (hinstB) {

 DOSOMETHING DoSomething = (DOSOMETHING)

 GetProcAddress(hinstB, "DoSomething");

 if (DoSomething) {

 DoSomething();

 }

}
}

Should this call to GetModuleHandle
create a dependency?

Note also that there are dependencies among DLLs
that go beyond just LoadLibrary .
For

example, if you pass a callback function pointer
to another DLL, you have created a reverse

dependency.

http://go.microsoft.com/?linkid=664920
http://msdn.microsoft.com/library/en-us/com/htm/cmf_a2c_95rt.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/getmodulehandle.asp

4/4

A final note is that this sort of implicit dependency,
as hard as it is to see as written above, is

even worse
once you toss global destructors into the mix.

class SomethingHolder

{

public:

SomethingHolder() : m_hSomething(NULL);

~SomethingHolder()

 { if (m_hSomething) FreeSomething(m_hSomething); }

HSOMETHING m_hSomething;

};
SomethingHolder g_SomethingHolder;

...

The DLL dependency is now hidden inside the
 SomethingHolder class, and when
 A.DLL

unloads, g_SomethingHolder ‘s
destructor will run and try to talk to B.DLL .
Hilarity

ensues.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

