
1/7

May 19, 2005

Loading the dictionary, part 6: Taking advantage of our
memory allocation pattern

devblogs.microsoft.com/oldnewthing/20050519-00

Raymond Chen

After our latest round of optimization, the 100ms barrier teased us,
just milliseconds away.

Profiling the resulting program reveals that
60% of the CPU is spent in operator new .
Is

there anything we can do about that?

Indeed, we can.
Notice that the memory allocation pattern for the strings in our
dictionary is

quite special:
Once a string is allocated into the dictionary,
it is never modified or freed while

the dictionary is in use.
When the dictionary is freed, all the strings are deleted at once.
This

means that we can design an allocator tailored to this
usage pattern.

I don’t know whether there is a standard name for this thing,
so I’m just going to call it a

StringPool .
A string pool has the following characteristics:

Once you allocate a string, you can’t modify or free it
as long as the pool remains in

existence.

If you destroy the string pool, all the strings in it are destroyed.

We implement it by using the same type of fast allocator that
the CLR uses: A single pointer.

[25 May 2005: The blog server software corrupts the diagram, sorry.]

allocated free

↑

p

To allocate memory, we just increment p by the number
of bytes we need.
If we run out of

memory, we just allocate a new block, point p
to its start, and carve the memory out of the

new block.
Destroying the pool consists of freeing all the blocks.

https://devblogs.microsoft.com/oldnewthing/20050519-00/?p=35603

2/7

Note also that this memory arrangement has very good locality.
Instead of scattering the

strings all over the heap, they are
collected into one location. Furthermore, they are stored in

memory in exactly the order we’re going to access them,
which means no wasted page

faults or cache lines.
(Well, you don’t know that’s the order we’re going to access them,
but

it’s true.
This is one of those
“performance-guided designs”
I mentioned a little while ago.)

class StringPool

{

public:

StringPool();

~StringPool();

LPWSTR AllocString(const WCHAR* pszBegin, const WCHAR* pszEnd);

private:

union HEADER {

 struct {

 HEADER* m_phdrPrev;

 SIZE_T m_cb;

 };

 WCHAR alignment;

};

enum { MIN_CBCHUNK = 32000,

 MAX_CHARALLOC = 1024*1024 };

private:

WCHAR* m_pchNext; // first available byte

WCHAR* m_pchLimit; // one past last available byte

HEADER* m_phdrCur; // current block

DWORD m_dwGranularity;

}; // colorization fixed 25 May

Each block of memory we allocate begins with a
 StringPool::HEADER structure, which we

use
to maintain a linked list of blocks as well as providing enough
information for us to free

the block when we’re done.

Exercise: Why is HEADER a union
containing a structure rather than just being a structure?

What is the significance of the alignment member?

inline RoundUp(DWORD cb, DWORD units)

{

 return ((cb + units - 1) / units) * units;

}

StringPool::StringPool()

: m_pchNext(NULL), m_pchLimit(NULL), m_phdrCur(NULL)

{

SYSTEM_INFO si;

GetSystemInfo(&si);

m_dwGranularity = RoundUp(sizeof(HEADER) + MIN_CBCHUNK,

 si.dwAllocationGranularity);

}

http://blogs.msdn.com/oldnewthing/archive/2005/05/11/416430.aspx

3/7

At construction, we compute the size of our chunks.
We base it on the system allocation

granularity, choosing
the next multiple of the system allocation granularity
that is at least

sizeof(HEADER) + MIN_CBCHUNK in size.
Since a chunk is supposed to be a comfortably

large block of
memory, we need to enforce a minimum chunk size to avoid having
an

enormous number of tiny chunks if we happen to be running on
a machine with a very fine

allocation granularity.

LPWSTR StringPool::AllocString(const WCHAR* pszBegin, const WCHAR* pszEnd)

{

size_t cch = pszEnd - pszBegin + 1;

LPWSTR psz = m_pchNext;

if (m_pchNext + cch <= m_pchLimit) {

 m_pchNext += cch;

 lstrcpynW(psz, pszBegin, cch);

 return psz;

}
if (cch > MAX_CHARALLOC) goto OOM;

DWORD cbAlloc = RoundUp(cch * sizeof(WCHAR) + sizeof(HEADER),

 m_dwGranularity);

BYTE* pbNext = reinterpret_cast<BYTE*>(

 VirtualAlloc(NULL, cbAlloc, MEM_COMMIT, PAGE_READWRITE));

if (!pbNext) {

OOM:

 static std::bad_alloc OOM;

 throw(OOM);

}
m_pchLimit = reinterpret_cast<WCHAR*>(pbNext + cbAlloc);

HEADER* phdrCur = reinterpret_cast<HEADER*>(pbNext);

phdrCur->m_phdrPrev = m_phdrCur;

phdrCur->m_cb = cbAlloc;

m_phdrCur = phdrCur;

m_pchNext = reinterpret_cast<WCHAR*>(phdrCur + 1);

return AllocString(pszBegin, pszEnd);

}

To allocate a string, we first try to carve it out of the
remainder of the current chunk. This

nearly always succeeds.

If the string doesn’t fit in the chunk, we allocate a new chunk
based on our allocation

granularity.
To avoid integer overflow in the computation of the desired
chunk size, we check

against a fixed “maximum allocation” and
go stright to the out-of-memory handler if it’s too

big.

Once we have a new chunk, we link it into our list of
 HEADER s and abandon the old chunk.

(Yes, this wastes some memory, but in our usage pattern,
it’s not much, and trying to squeeze

out those last few bytes
isn’t worth the added complexity.)
Once that’s done, we try to allocate

4/7

again; this second time
will certainly succeed since we made sure the new chunk was big

enough. (And any decent compiler will detect this as a tail
recursion and turn it into a

“goto”.)

There is subtlety here. Notice that we do not update
 m_pchNext until after we’re sure we

either
satisfied the allocation or allocated a new chunk.
This ensures that our member

variables are stable at the points
where exceptions can be thrown.
Writing exception-safe

code is hard, and
seeing the difference between code that is and isn’t exception
safe is often

quite difficult.

StringPool::~StringPool()

{

HEADER* phdr = m_phdrCur;

while (phdr) {

 HEADER hdr = *phdr;

 VirtualFree(hdr.m_phdrPrev, hdr.m_cb, MEM_RELEASE);

 phdr = hdr.m_phdrPrev;

}
}

To destroy the string pool, we walk our list of chunks and
free each one. Note the importance

of copying the HEADER
out of the chunk before we free it!

Using this string pool requires only small changes to the
rest of our program.

5/7

struct DictionaryEntry

{

bool Parse(const WCHAR *begin, const WCHAR *end, StringPool& pool);

// void Destruct() {

// delete[] m_pszTrad;

// delete[] m_pszSimp;

// delete[] m_pszPinyin;

// delete[] m_pszEnglish;

// }

LPWSTR m_pszTrad;

LPWSTR m_pszSimp;

LPWSTR m_pszPinyin;

LPWSTR m_pszEnglish;

};
class Dictionary

{

public:

Dictionary();

// ~Dictionary();

int Length() { return v.size(); }

private:

vector v;

StringPool m_pool;

};
// Dictionary::~Dictionary()

// {

// for (vector<DictionaryEntry>::iterator i = v.begin();

// i != v.end(); i++) {

// i->Destruct();

// }

// }

We no longer need to free the strings in the DictionaryEntry
manually, so the Destruct

method and the
 Dictionary destructor can go.

6/7

bool DictionaryEntry::Parse(

 const WCHAR *begin, const WCHAR *end,

 StringPool& pool)

{

const WCHAR* pch = std::find(begin, end, L' ');

if (pch >= end) return false;

m_pszTrad = pool.AllocString(begin, pch);

begin = std::find(pch, end, L'[') + 1;

if (begin >= end) return false;

pch = std::find(begin, end, L']');

if (pch >= end) return false;

m_pszPinyin = pool.AllocString(begin, pch);

begin = std::find(pch, end, L'/') + 1;

if (begin >= end) return false;

for (pch = end; *--pch != L'/';) { }

if (begin >= pch) return false;

m_pszEnglish = pool.AllocString(begin, pch);

return true;

}

Dictionary::Dictionary()

{

...

 if (de.Parse(buf, buf + cchResult, m_pool)) {

...

}

And finally, we pass our string pool to
 DictionaryEntry::Parse so it knows where
to get

memory for its strings from.

With these changes, the dictionary loads in 70ms
(or 80ms if you include the time it takes to

destroy the
dictionary).
This is 70% faster than the previous version,
and over three times as

fast if you include the destruction time.

And now that we’ve reached our 100ms goal, it’s a good time to stop.
We’ve gotten the

running time of dictionary loading down from
an uncomfortable 2080ms to a peppier 70ms,

a nearly 30-fold improvement,
by repeatedly profiling and focusing on where the most time

is
being spent.
(I have some more simple tricks that shave a few
more milliseconds off the

startup time.
Perhaps I’ll bring them into play if other changes to startup
push us over the

100ms boundary.
As things stand, the largest CPU consumers are
 MultiByteToWideChar

and lstrcpynW ,
so that’s where I would focus next.)

That’s the end of the first stage. The next stage will be
displaying the dictionary in an owner-

data listview, but you’ll
have to wait until next month.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

7/7

Follow

