
1/2

May 16, 2005

Loading the dictionary, part 4: Character conversion
redux

devblogs.microsoft.com/oldnewthing/20050516-30

Raymond Chen

Getting rid of getline was a big help, but 480ms
is still not quite peppy enough. You need

to respond to user
actions within a tenth of a second for thing to seem responsive.

Profiling the latest endeavor reveals that 40% of our CPU time
is spent in codecvt::in .

Some debugging reveals
that codecvt::in ultimately calls
 MultiByteToWideChar but

uses it to convert
only one or two characters at a time, even though we handed it a
whole line.

Let’s get rid of codecvt::in and convert the
characters ourselves, calling

MultiByteToWideChar exactly once to convert the
entire line at a single go.

https://devblogs.microsoft.com/oldnewthing/20050516-30/?p=35633

2/2

#define CP_BIG5 950

Dictionary::Dictionary()

{

MappedTextFile mtf(TEXT("cedict.b5"));

// typedef std::codecvt<wchar_t, char, mbstate_t> widecvt;

// std::locale l(".950");

// const widecvt& cvt = _USE(l, widecvt); // use_facet<widecvt>(l);

const CHAR* pchBuf = mtf.Buffer();

const CHAR* pchEnd = pchBuf + mtf.Length();

while (pchBuf < pchEnd) {

 const CHAR* pchEOL = std::find(pchBuf, pchEnd, '\n');

 if (*pchBuf != '#') {

 size_t cchBuf = pchEOL - pchBuf;

 wchar_t* buf = new wchar_t[cchBuf];

 DWORD cchResult = MultiByteToWideChar(CP_BIG5, 0,

 pchBuf, cchBuf, buf, cchBuf);

 if (cchResult) {

 wstring line(buf, cchResult);

 DictionaryEntry de;

 if (de.Parse(line)) {

 v.push_back(de);

 }

 }

 delete[] buf;

 }

 pchBuf = pchEOL + 1;

}
}

Instead of using the codecvt::in method to perform
character conversion, we go straight

to the
 MultiByteToWideChar function.
Notice that we assume that the Big5 string will not

generate
more Unicode characters than its length in bytes.
This happens to be a safe

assumption based on our external knowledge
of the Big5 encoding. (If the encoding were

something else,
the assumption may no longer be valid.)

With this change, the dictionary load time has dropped to 240ms
(or 300ms if you include

the time it takes to destroy the
dictionary). That’s twice as fast the previous version, but still

not quite close enough to the 100ms goal.
We still have some work ahead of us.

[Raymond is currently on vacation; this message was pre-recorded.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

