
1/4

May 13, 2005

Loading the dictionary, part 3: Breaking the text into lines
devblogs.microsoft.com/oldnewthing/20050513-26

Raymond Chen

Even after moving the character conversion out of the
 getline function, profiling reveals

that
 getline is still taking nearly 50% of our CPU.
The fastest code is code that isn’t there,

so let’s get rid of
 getline altogether. Oh wait, we still need to break
the file into lines.
But

maybe we can break the file into lines faster than
 getline did.

https://devblogs.microsoft.com/oldnewthing/20050513-26/?p=35643

2/4

#include <algorithm>

class MappedTextFile

{

public:

MappedTextFile(LPCTSTR pszFile);

~MappedTextFile();

const CHAR *Buffer() { return m_p; }

DWORD Length() const { return m_cb; }

private:

PCHAR m_p;

DWORD m_cb;

HANDLE m_hf;

HANDLE m_hfm;

};
MappedTextFile::MappedTextFile(LPCTSTR pszFile)

 : m_hfm(NULL), m_p(NULL), m_cb(0)

{

m_hf = CreateFile(pszFile, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

if (m_hf != INVALID_HANDLE_VALUE) {

 DWORD cb = GetFileSize(m_hf, NULL);

 m_hfm = CreateFileMapping(m_hf, NULL, PAGE_READONLY, 0, 0, NULL);

 if (m_hfm != NULL) {

 m_p = reinterpret_cast<PCHAR>

 (MapViewOfFile(m_hfm, FILE_MAP_READ, 0, 0, cb));

 if (m_p) {

 m_cb = cb;

 }

 }

}
}

MappedTextFile::~MappedTextFile()

{

if (m_p) UnmapViewOfFile(m_p);

if (m_hfm) CloseHandle(m_hfm);

if (m_hf != INVALID_HANDLE_VALUE) CloseHandle(m_hf);

}

This very simple class babysits a read-only memory-mapped file.
(Yes, there is a bit of

oddness with files greater than 4GB,
but let’s ignore that for now, since it’s a distraction from

our
main point.)

Now that the file is memory-mapped, we can just scan it directly.

3/4

Dictionary::Dictionary()

{

MappedTextFile mtf(TEXT("cedict.b5"));

typedef std::codecvt<wchar_t, char, mbstate_t> widecvt;

std::locale l(".950");

const widecvt& cvt = _USE(l, widecvt); // use_facet<widecvt>(l);

const CHAR* pchBuf = mtf.Buffer();

const CHAR* pchEnd = pchBuf + mtf.Length();

while (pchBuf < pchEnd) {

 const CHAR* pchEOL = std::find(pchBuf, pchEnd, '\n');

 if (*pchBuf != '#') {

 size_t cchBuf = pchEOL - pchBuf;

 wchar_t* buf = new wchar_t[cchBuf];

 mbstate_t state = 0;

 char* nextsrc;

 wchar_t* nextto;

 if (cvt.in(state, pchBuf, pchEOL, nextsrc,

 buf, buf + cchBuf, nextto) == widecvt::ok) {

 wstring line(buf, nextto - buf);

 DictionaryEntry de;

 if (de.Parse(line)) {

 v.push_back(de);

 }

 }

 delete[] buf;

 }

 pchBuf = pchEOL + 1;

}
}

We simply scan the memory-mapped file for a '\n'
character, which tells us where the line

ends.
This tells us the location and length of the line,
which we use to convert it to Unicode

and continue our parsing.

Exercise:Why don’t we have to worry about
the carriage
return that comes before the

linefeed?

Exercise:Why don’t we have to worry about
possibly reading past the end of the file when

we check
 *pchBuf != '#' ?

With this change, the program now loads the dictionary in 480ms
(or 550ms if you include

the time it takes to destroy the
dictionary). That’s over twice as fast as the previous version.

But it’s still not fast enough. A half-second delay between hitting
 Enter and getting the

visual feedback is still
unsatisfying. We can do better.

[Raymond is currently on vacation; this message was pre-recorded.]

Raymond Chen

http://blogs.msdn.com/oldnewthing/archive/2004/03/18/91899.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

