
1/3

May 11, 2005

Loading the dictionary, part 2: Character conversion
devblogs.microsoft.com/oldnewthing/20050511-46

Raymond Chen

When you want to optimize a program, you first need to know
where the time is being spent.

There’s no point optimizing a function that isn’t actually
responsible for your poor

performance.
For example, if a particular function is responsible for 2% of
your CPU time,

then even if you optimized it down to infinite speed,
your program would speed up at best by

only little over 2%.
In the comments to yesterday’s entry, several people put forth
suggestions

as to how the program could be optimized,
in the process quite amply demonstrating this

principle.
None of the people who made suggestions actually investigated
the program to see

where the glaring bottleneck was.

(Rico Mariani points out that you also
need to take performance in account when doing high

level designs,
choosing algorithms and data structures that are suitable for
the level of

performance you need.
If profiling reveals that a fundamental design decision
is responsible

for a performance bottleneck, you’re in big trouble.
You will see this sort of performance-

guided design as the program develops.
And you should check out
Performance Quiz #6

which starts with the very program we’re developing here.)

Upon profiling our dictionary-loader, I discovered that
80% of the CPU time was spent in

getline .
Clearly this is where the focus needs to be.
Everything else is just noise.

Digging a little deeper, it turns out that
29% of the CPU time was spent by getline doing

character set conversion in codecvt::do_in .
Some debugging revealed that

codecvt::do_in
was being called millions of times, each time converting
just one or two

characters. In fact, for each character
in the file, codecvt::do_in was called once
and

sometimes twice!

Let’s get rid of the piecemeal character set conversion and
instead convert entire lines at a

time.

https://devblogs.microsoft.com/oldnewthing/20050511-46/?p=35663
http://blogs.msdn.com/ricom
http://blogs.msdn.com/ricom/archive/2005/05/10/416151.aspx

2/3

Dictionary::Dictionary()

{

std::ifstream src;

typedef std::codecvt<wchar_t, char, mbstate_t> widecvt;

std::locale l(".950");

const widecvt& cvt = _USE(l, widecvt); // use_facet<widecvt>(l);

src.open("cedict.b5");

string s;

while (getline(src, s)) {

 if (s.length() > 0 && s[0] != L'#') {

 wchar_t* buf = new wchar_t[s.length()];

 mbstate_t state = 0;

 char* nextsrc;

 wchar_t* nextto;

 if (cvt.in(state, s.data(), s.data() + s.length(), nextsrc,

 buf, buf + s.length(), nextto) == widecvt::ok) {

 wstring line(buf, nextto - buf);

 DictionaryEntry de;

 if (de.Parse(line)) {

 v.push_back(de);

 }

 }

 delete[] buf;

 }

}
}

Instead of using a wifstream ,
we just use a non-Unicode ifstream
and convert each line

to Unicode manually.
Doing it a line at a time rather than a character at a time,
we hope, will

be more efficient.

We ask code page 950 for a converter, which we call cvt .
Notice that the Microsoft C++

compiler requires you to use
the strange _USE macro instead of the more traditional

use_facet .

For each line that isn’t a comment, we convert it to Unicode.
Our lives are complicated by the

fact that codecvt::in
requires pointers to elements rather than iterators, which means

that we can’t use a wstring or a vector ;
we need a plain boring wchar_t[] array.

(Notice that we can cheat on the “from” buffer and use the
 string::data() function to get

at a read-only
array representation of the string.)
If the conversion succeeds, we convert the

array into a proper
string and continue as before.

With this tweak, the program now loads the dictionary in 1120ms
(or 1180ms if you include

the time it takes to destroy the
dictionary). That’s nearly twice as fast as the previous version.

You might think that we could avoid redundant allocations
by caching the temporary

conversion buffer between lines.
I tried that, and surprisingly, it actually slowed the program

down by 10ms.
Such is
the counter-intuitive world of optimization.
That’s why it’s important

http://blogs.msdn.com/oldnewthing/archive/2004/12/16/317157.aspx

3/3

to identify your bottlenecks via
measurement instead of just guessing at them.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

