
1/4

May 10, 2005

Loading the dictionary, part 1: Starting point
devblogs.microsoft.com/oldnewthing/20050510-55

Raymond Chen

The first thing we’ll need to do in our little dictionary program
is to load the dictionary into

memory. The format of the dictionary
file is as a plain text file, each line of which is of the

form

Chinese [pinyin] /English 1/English 2/.../

舉例 [ju3 li4] /to give an example/

Since it was the Big5 dictionary we downloaded,
the Chinese characters are in Big5 format,

known to Windows as code page 950.
Our program will be Unicode, so we’ll have to convert

it as we load
the dictionary. Yes, I could’ve used the Unicode version of the
dictionary, but it

so happens that when I set out to write this program,
there was no Unicode version available.

Fortunately, this oversight opened up the opportunity to illustrate
some other programming

decisions and techniques.

The first stage in our series of exercises will be loading the dictionary
into memory.

https://devblogs.microsoft.com/oldnewthing/20050510-55/?p=35673
http://ftp.cc.monash.edu.au/pub/nihongo/cedict.html

2/4

#define UNICODE

#define _UNICODE

#include <windows.h>

#include <string>

#include <fstream>

#include <iostream> // for cin/cout

#include <vector>

using std::string;

using std::wstring;

using std::vector;

struct DictionaryEntry

{

bool Parse(const wstring& line);

wstring trad;

wstring simp;

wstring pinyin;

wstring english;

};
bool DictionaryEntry::Parse(const wstring& line)

{

 wstring::size_type start = 0;

 wstring::size_type end = line.find(L' ', start);

 if (end == wstring::npos) return false;

 trad.assign(line, start, end);

 start = line.find(L'[', end);

 if (start == wstring::npos) return false;

 end = line.find(L']', ++start);

 if (end == wstring::npos) return false;

 pinyin.assign(line, start, end - start);

 start = line.find(L'/', end);

 if (start == wstring::npos) return false;

 start++;

 end = line.rfind(L'/');

 if (end == wstring::npos) return false;

 if (end <= start) return false;

 english.assign(line, start, end-start);

 return true;

}

class Dictionary

{

public:

Dictionary();

int Length() { return v.size(); }

const DictionaryEntry& Item(int i) { return v[i]; }

private:

vector<DictionaryEntry> v;

};
Dictionary::Dictionary()

{

std::wifstream src;

src.imbue(std::locale(".950"));

src.open("cedict.b5");

http://blogs.msdn.com/oldnewthing/archive/2004/02/12/71851.aspx

3/4

wstring s;

while (getline(src, s)) {

 if (s.length() > 0 && s[0] != L'#') {

 DictionaryEntry de;

 if (de.Parse(s)) {

 v.push_back(de);

 }

 }

}
}

int __cdecl main(int argc, const char* argv[])

{

DWORD dw = GetTickCount();

{
 Dictionary dict;

 std::cout << dict.Length() << std::endl;

 std::cout << GetTickCount() - dw << std::endl;

}
std::cout << GetTickCount() - dw << std::endl;

return 0;

}

Our dictionary is just a list of words with their English definitions.
The Chinese words are

written in three forms
(traditional Chinese,
simplified Chinese, and
Pinyin romanization).

For those who are curious, there are two writing systems
for the Mandarin Chinese language

and two phonetic systems.
Which one a particular Mandarin-speaking population follows

depends
on whether they fell under the influence of China’s
language reform of 1956.

Traditional Chinese characters and the Bopomo
phonetic system
(also called Bopomofo)
are

used on Taiwan; simplified Chinese characters
and the Pinyin system are used in China.

Converting Pinyin to Bopomo isn’t interesting,
so I’ve removed that part from the program

I’m presenting here.

(The schism in the spelling of the English language follows a similar
pattern.
Under the

leadership of Noah Webster,
the United States underwent its own spelling reform,
but

countries which were under the influence of the British crown
retained the traditional

spellings.
Spelling reform continues in other languages even today,
and the subject is almost

always highly contentious,
with traditionalists and reformists pitted against each other
in a

battle over a language’s—and by proxy,
a culture’s—identity.)

The program itself is fairly straightforward.
It creates a Unicode file stream wifstream
and

“imbues” it with code page 950 (Big5).
This instructs the runtime to interpret the bytes of the

file
interpreted in the specified code page.
We read strings out of the file, ignore the

comments,
and parse the rest, appending them to our vector
of dictionary entries.

Parsing the line consists of finding the spaces, brackets,
and slashes, and splitting the line

into the traditional Chinese,
Pinyin, and English components. (We’ll deal with simplified

Chinese later.)

http://www.goethe.de/z/50/reform/

4/4

When I run this program on my machine, the dictionary loads in 2080ms
(or 2140ms if you

include the time to run the destructor).
This is an unacceptably long startup time, so the first

order
of business is to make startup faster. That will be the focus of
this stage.

Notice that as a sanity check, I print the total number of words in the
dictionary. The number

should match the number of lines in the
 cedict.b5 file (minus the one comment line).
If

not, then I know that something went wrong.
This is an important sanity check:
You

might make a performance optimization that looks great
when you run it past a stopwatch,

only to discover that your “optimization” actually introduced a
bug. For example, one of my

attempted optimizations of this program
resulted in a phenomenal tenfold speedup,
but only

because of a bug that caused it to think it was finished
when it had in reality processed only

10% of the dictionary!

As my colleague
Rico Mariani is fond of saying,
“It’s easy to make it fast if it doesn’t have to

work!”

Raymond Chen

Follow

http://blogs.msdn.com/ricom
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

