
1/3

April 14, 2005

Computing the interval between two moments in time
devblogs.microsoft.com/oldnewthing/20050414-39

Raymond Chen

Computing the interval between two moments in time is easy:
It’s just subtraction, but

subtraction may not be what you want.

If you are displaying time units on the order of months and
years, then you run into the

problem that a month is of variable
length.
some people just take the value relative to a base

date of January 1
and extract the year and month counts.

Unfortunately, this results in somewhat non-intuitive results.
Let’s illustrate with some

examples. I’m going to write this in C#
because it lets me focus on the algorithm instead of

getting distracted
by “oh dear how do I convert between SYSTEMTIME and FILETIME?”

issues,
and because it hightlights some new issues.

// Remember, code in italics is wrong

using System;

using SC = System.Console;

class Program {

static void PrintAge(DateTime bday, DateTime asof)

{
 TimeSpan span = asof - bday;

 SC.WriteLine(span);

}
public static void Main(string[] args) {

 DateTime bday = DateTime.Parse(args[0]);

 DateTime asof = DateTime.Parse(args[1]);

 if (bday > asof) { SC.WriteLine("not born yet"); return; }

 PrintAge(bday, asof);

}
}

The two parameters to the program are the victim’s birthday
and the date as of which you

want to compute the victim’s age.

Here’s a sample run:

> howold 1/1/2001 1/1/2002

365.00:00:00

https://devblogs.microsoft.com/oldnewthing/20050414-39/?p=35903
http://groups.google.com/groups?selm=aNidndhYae_Ukz_cRVn-2g@rogers.com

2/3

Observe that the TimeSpan structure does not attempt
to produce results in any unit larger

than a day, since the authors
of TimeSpan realized that months and years are variable-

length.

A naive implementation might go like this:

static void PrintAge(DateTime bday, DateTime asof)

{

TimeSpan span = asof - bday;

DateTime dt = (new DateTime(1900, 1, 1)).Add(span);

SC.WriteLine("{0} years, {1} months, {2} days",

 dt.Year - 1900, dt.Month - 1, dt.Day - 1);

}

Try it with some command lines and see what happens:

> howold 1/1/2001 1/1/2002

1 years, 0 months, 0 days // good

> howold 1/1/2001 3/1/2001

0 years, 2 months, 0 days // good

> howold 1/1/2000 1/1/2001

1 years, 0 months, 1 days // wrong

> howold 9/1/2000 11/1/2000

0 years, 2 months, 2 days // wrong

Why does it say that a person born on January 1, 2000 is
one year and one day old on

January 1, 2001?
The person is clearly exactly one year old on that day.
Similarly, it thinks

that November first is two months and two days
after September first, when it is clearly two

months exactly.

The reason is that months and years are variable-length, but our
algorithm assumes that they

are constant. Specifically, months and
years are context-sensitive but the algorithm assumes

that they are
translation-invariant.
The lengths of months and years depend which month

and year
you’re talking about.
Leap years are longer than non-leap years.
Months have all

different lengths.

How do you fix this?
Well, first you have to figure out how human beings compute the

difference between dates when variable-length units are involved.
The most common

algorithm is to declare that
one year has elapsed when the same month and day have arrived

in the year
following the starting point.
Similarly, a month has elapsed when the same

numerical date has arrived
in the month following the starting point.

Mentally, you add years until you can’t add years any more without
overshooting. Then you

add as many months as fit, and then finish
off with days. (Some people subtract, but the

result is the same.)

Now you get to mimic this algorithm in code.

3/3

static void PrintAge(DateTime bday, DateTime asof)

{

// Accumulate years without going over.

int years = asof.Year - bday.Year;

DateTime t = bday.AddYears(years);

if (t > asof) { years--; t = bday.AddYears(years); }

// Accumulate months without going over.

int months = asof.Month - bday.Month; // fixed 10pm

if (asof.Day < bday.Day) months--;

months = (months + 12) % 12;

t = t.AddMonths(months);

// Days are constant-length, woo-hoo!

int days = (asof - t).Days;

SC.WriteLine("{0} years, {1} months, {2} days",

 years, months, days);

}

Notice that this algorithm agrees with the common belief that
people born on February 29th

have birthdays only once every four years.

Exercise:
Explain what goes wrong if you change the line

if (t > asof) { years--; t = bday.AddYears(years); }

to

if (t > asof) { years--; t = t.AddYears(-1); }

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

