
1/2

March 31, 2005

The dialog manager, part 3: Creating the controls
devblogs.microsoft.com/oldnewthing/20050331-00

Raymond Chen

This is actually a lot less work than creating the frame,
believe it or not.

For each control in the template, the corresponding child
window is created. The control’s

sizes and position is
specified in the template in DLUs, so of course they need
to be converted

to pixels.

 int x = XDLU2Pix(ItemTemplate.x);

 int y = YDLU2Pix(ItemTemplate.y);

 int cx = XDLU2Pix(ItemTemplate.cx);

 int cy = YDLU2Pix(ItemTemplate.cy);

The class name and caption also come from the template.
There are also the optional extra

bytes pExtra which nobody uses
but which remain in the template definition for historical

reasons.
Once that information has been collected,
it’s
time to make the donuts.

 HWND hwndChild = CreateWindowEx(

 ItemTemplate.dwExStyle | WS_EX_NOPARENTNOTIFY,

 pszClass, pwzCaption, ItemTemplate.dwStyle,

 x, y, cx, cy, hdlg, ItemTemplate.dwId,

 hinst, pExtra);

Notice that the WS_EX_NOPARENTNOTIFY style is forced on
for dialog controls.

This next part often trips people up. “When I try to create
my dialog, it fails and I don’t know

why.” It’s probably
because one of the controls on the dialog could not be created,
usually

because you forgot to register the window class for that
control. (For example, you forgot to

call
the InitCommonControlsEx function
or
you forgot to
 LoadLibrary the appropriate

version of the RichEdit control.)

 if (!hwndChild) {

 DestroyWindow(hdlg);

 return NULL;

 }

The DS_NOFAILCREATE style suppresses the failure check above.

https://devblogs.microsoft.com/oldnewthing/20050331-00/?p=36003
http://www.dunkindonuts.com/
http://msdn.microsoft.com/library/en-us/shellcc/platform/commctls/common/functions/initcommoncontrolsex.asp

2/2

But if the control did get created, then it needs to be
initialized.

 SetWindowContextHelpId(hwndChild, ItemTemplate.dwHelpID);

 SetWindowFont(hwndChild, hf, FALSE);

Repeat once for each item template, and you now have a dialog
box with all its child controls.

Tell the dialog procedure that it can initialize its child windows,
show the (now-ready) dialog

box
if we deferred the WS_VISIBLE bit
when constructing the frame,
and return the dialog

box to our caller, ready for action.

 // The default focus is the first item that is a valid tab-stop.

 HWND hwndDefaultFocus = GetNextDlgTabItem(hdlg, NULL, FALSE);

 if (SendMessage(hdlg, WM_INITDIALOG, hwndDefaultFocus, lParam)) {

 SetDialogFocus(hwndDefaultFocus);

 }

 if (fWasVisible) ShowWindow(hdlg);

 return hdlg;

}

The SetDialogFocus function
we saw last year.

So there you have it: You have now seen how dialog box
sausages are made.

(Actually, reality is much sausagier, since I skipped
over all the app compat hacks! For

example, there’s a
program out there that relies on the subtle placement and absence
of the

WS_BORDER style to decide whether a control is a combo
box or a listbox. I guess
the

GetClassName function was too much work?)

I hope this helps you understand
a little better how dialog templates fit into the big picture.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/03/11/87941.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/08/02/205624.aspx
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/WindowClasses/WindowClassReference/WindowClassFunctions/GetClassName.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

