
1/4

March 30, 2005

The dialog manager, part 2: Creating the frame window
devblogs.microsoft.com/oldnewthing/20050330-00

Raymond Chen

The dialog template describes what the dialog box should look like,
so the dialog manager

walks the template and follows the
instructions therein. It’s pretty straightforward; there isn’t

much room for decision-making. You just do what the template says.

For simplicity, I’m going to assume that the dialog template
is an
extended dialog template.

This is a superset of the
classic
DLGTEMPLATE, so there is no loss of generality.

Furthermore, I will skip over some of the esoterica
(like the
WM_ENTERIDLE message)

because that would just
be distracting from the main point.

I am also going to ignore error-checking for the same reason.

Finally, I’m going to assume you already understand the structure of
the various dialog

templates and ignore the parsing issues.
(If you’ve forgotten, you can go back and re-read my

series from
last June.
Most important are parts
2
and
4,
and the
summary table
is a handy

quick-reference.)

Okay, here we go.

The first order of business is to study the dialog styles and
translate the DS_* styles into

WS_* and
 WS_EX_* styles.

Dialog style Window style Extended window style

DS_MODALFRAME add WS_EX_DLGMODALFRAME

add WS_EX_WINDOWEDGE

DS_CONTEXTHELP add WS_EX_CONTEXTHELP

DS_CONTROL remove WS_CAPTION

remove WS_SYSMENU

add WS_EX_CONTROLPARENT

Question: Why does the DS_CONTROL style remove the
 WS_CAPTION and WS_SYSMENU

styles?

https://devblogs.microsoft.com/oldnewthing/20050330-00/?p=36023
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/DialogBoxes/DialogBoxReference/DialogBoxStructures/DLGTEMPLATEEX.asp
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/DialogBoxes/DialogBoxReference/DialogBoxStructures/DLGTEMPLATE.asp
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/DialogBoxes/DialogBoxReference/DialogBoxMessages/WM_ENTERIDLE.asp
http://blogs.msdn.com/oldnewthing/archive/2004/06/21/161375.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/06/21/163596.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/06/24/164737.aspx

2/4

Answer: To make it easier for people to convert an
existing dialog into a DS_CONTROL sub-

dialog
by simply adding a single style flag.

If the template includes a menu, the menu is loaded from
the instance handle passed as part

of the creation parameters.

 hmenu = LoadMenu(hinst, <resource identifier in template>);

This is a common theme in dialog creation: The instance handle
you pass to the dialog

creation function is used for all resource-related
activities during dialog creation.

The algorithm for getting the dialog font goes like this:

 if (DS_SETFONT) {

 use font specified in template

 } else if (DS_FIXEDSYS) {

 use GetStockFont(SYSTEM_FIXED_FONT);

 } else {

 use GetStockFont(SYSTEM_FONT);

 }

Notice that DS_SETFONT takes priority over
 DS_FIXEDFONT .
We saw the reason for this a

few weeks ago.

Once the dialog manager has the font, it is measured so
that its dimensions can be used to

convert
dialog units (DLUs) to pixels.
Everything in dialog box layout is done in DLUs.
Here’s

a reminder if you’ve forgotten the formula that converts
DLUs to pixels. In explicit terms:

// 4 xdlu = 1 average character width

// 8 ydlu = 1 average character height

#define XDLU2Pix(xdlu) MulDiv(xdlu, AveCharWidth, 4)

#define YDLU2Pix(ydlu) MulDiv(ydlu, AveCharHeight, 8)

The dialog box size come from the template.

cxDlg = XDLU2Pix(DialogTemplate.cx);

cyDlg = YDLU2Pix(DialogTemplate.cy);

The dialog size in the template is the size of the
client area, so we need to add in the

nonclient
area too.

 RECT rcAdjust = { 0, 0, cxDlg, cyDlg };

 AdjustWindowRectEx(&rcAdjust, dwStyle, hmenu != NULL, dwExStyle);

 int cxDlg = rcAdjust.right - rcAdjust.left;

 int cyDlg = rcAdjust.bottom - rcAdjust.top;

How do I know that it’s the client area instead of the full
window including nonclient area?

Because if it were the
full window rectangle, then it would be impossible to design
a dialog!

The template designer doesn’t know what nonclient
metrics the end-user’s system will be set

http://blogs.msdn.com/oldnewthing/archive/2005/02/07/368423.aspx
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/dialogboxes/dialogboxreference/dialogboxfunctions/mapdialogrect.asp

3/4

to and therefore
cannot take it into account at design time.

(This is a special case of a more general rule:
If you’re not sure whether something is true, ask

yourself,
“What would the world be like if it were true?”
If you find a logical consequence
that

is obviously wrong, then you have
just proven [by contradiction]
that the thing you’re

considering is indeed not true.
This is an important logical
principle that I will come back to

again
and again.
In fact, you saw it just a few days ago.
)

Assuming the DS_ABSALIGN style is not set,
the coordinates given in the dialog template are

relative to the dialog’s parent.

 POINT pt = { XDLU2Pix(DialogTemplate.x),

 YDLU2Pix(DialogTemplate.y) };

 ClientToScreen(hwndParent, &pt);

But what if the caller passed hwndParent = NULL ?
In that case, the dialog position is

relative to the upper left
corner of the primary monitor.
But don’t do this.

On a multiple-monitor system, it puts the dialog box on
the primary monitor, even if

your program is running on
a secondary monitor.

The user may have docked their taskbar at the top or left
edge of the screen, which will

cover your dialog.

Even on a single-monitor system, your program might be running
in the lower-right

corner of the screen. Putting your dialog
at the upper left corner doesn’t create a

meaningful connection
between the two.

If two copies of your program are running, their dialog boxes
will cover each other

precisely.
We saw the dangers of this in a previous entry.

Moral of the story: Always pass a hwndParent window
so that the dialog appears in a

meaningful location relative to
the rest of your program.
(And
don’t just grab

GetDesktopWindow either!)

Okay, we are now all ready to create the dialog:
We have its class, its font, its menu, its size

and position…

Oh wait, we have to deal with that subtlety
of dialog box creation discussed earlier:
The

dialog box is always created initially hidden.

 BOOL fWasVisible = dwStyle & WS_VISIBLE;

 dwStyle &= ~WS_VISIBLE;

The dialog class and title come from the template.
Pretty much everyone just uses the default

dialog class,
although I explained in an earlier article how
you might use a custom dialog

class.

Okay, now we have the information necessary to create the window.

http://blogs.msdn.com/oldnewthing/archive/2005/02/15/372995.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/03/14/395271.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/02/24/79212.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/03/11/87941.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/11/13/55662.aspx

4/4

HWND hdlg = CreateWindowEx(dwExStyle, pszClass,

 pszCaption, dwStyle & 0xFFFF0000, pt.x, pt.y,

 cxDlg, cyDlg, hwndParent, hmenu, hinst, NULL);

Notice that we filter
out all the low style bits (per-class) since we already
translated the

DS_* styles into “real” styles.

This is why your dialog procedure doesn’t get
the window creation messages like

WM_CREATE .
At the time the frame is created, the dialog procedure
hasn’t yet entered the

picture.
Only after the frame is created can the dialog manager
attach the dialog procedure.

// Set the dialog procedure

SetWindowLongPtr(hdlg, DWLP_DLGPROC, (LPARAM)lpDlgProc);

The dialog manager does some more fiddling at
this point, based on the dialog template

styles.
The template may have asked for a window context help ID.
And if the template did

not specify window styles that
permit resizing, maximizing or minimizing, the associated

menu items are removed from the dialog box’s system menu.

And it sets the font.

 SetWindowFont(hdlg, hf, FALSE);

This is why the first message your dialog procedure
receives happens to be WM_SETFONT : It

is the first
message sent after the DWLP_DLGPROC has been set.
Of course, this
behavior can

change in the future; you shouldn’t
rely on message ordering.

Okay, the dialog frame is now open for business.
Next up: Creating the controls.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

