
1/2

March 23, 2005

Why does the debugger show me the wrong virtual
function?

devblogs.microsoft.com/oldnewthing/20050323-00

Raymond Chen

Pointers to virtual functions all look basically the same
and therefore,
as we learned last time,

all end up merged
into a single function.
Here’s a contrived example:

class Class1

{

public:

virtual int f1() { return 0; }

virtual int f2() { return 1; }

};
class Class2

{

public:

virtual int g1() { return 2; }

virtual int g2() { return 3; }

};
int (Class1::*pfn1)() = Class1::f2;

int (Class2::*pfn2)() = Class2::g2;

If you take a look at pfn1 and pfn2
you’ll see that the point to the same function:

0:000> dd pfn1 l1

01002000 010010c8

0:000> dd pfn2 l1

01002004 010010c8

0:000> u 10010c8 l2

010010c8 8b01 mov eax,[ecx] ; first vtable

010010ca ff6004 jmp dword ptr [eax+0x4] ; second function

That’s because the virtual functions Class1::f2 and
 Class2::g2 are both stored in the

same location
relative to the respective object pointer:
They are the second entry in the first

vtable.
Therefore, the code to call those functions is identical
and consequently has been

merged by the linker.

https://devblogs.microsoft.com/oldnewthing/20050323-00/?p=36103
https://devblogs.microsoft.com/oldnewthing/archive/2005/03/22/400373.aspx

2/2

Notice that the function pointers are not direct pointers to
the concrete implementations of

Class1::f2 and
 Class2::g2 because the function pointer might
be applied to a derived

class which override the virtual
function:

class Class3 : public Class1

{

public:

virtual int f2() { return 9; }

};
Class3 c3;

(c3.*pfn1)(); // calls Class3::f2

Applying the function pointer invokes the function on the derived class,
which is the whole

point of declaring the function Class1::f2
as virtual in the first place.

Note that the C++ language explicitly states that the result of comparing
non-null pointers to

virtual member functions is “unspecified”,
which is language-standards speak for “the result

not only depends on
the implementation, but the implementation isn’t even required to

document how it arrives at the result.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

