
1/2

March 10, 2005

Why does SystemParametersInfo hang when I pass the
SPIF_SENDCHANGE flag?

devblogs.microsoft.com/oldnewthing/20050310-00

Raymond Chen

If you pass the SPIF_SENDCHANGE flag to
the SystemParametersInfo function,
it will

broadcast
the WM_SETTINGCHANGE message
with the wParam equal to the system parameter

code you passed.
For example, if you call

SystemParametersInfo(SPI_SETDOUBLECLICKTIME,

 500, 0, SPIF_UPDATEINIFILE | SPIF_SENDCHANGE);

then the system will broadcast the message

SendMessage(HWND_BROADCAST, WM_SETTINGCHANGE,

 SPI_SETDOUBLECLICKTIME, 0);

If there is a window that isn’t responding to messages,
then this broadcast will hang until

that unresponsive
window finally resumes responding to messages or is killed.

If you’d rather not be victimed by unresponsive windows,
you have a few options, but it also

may affect your program’s
expectations.

You could issue the SystemParametersInfo
call on a background thread. Then your

background thread
is the one that blocks instead of your UI thread.

With this message, the background thread can notify the
main thread when the broadcast

finally completes, at which
point your program now knows that all windows have received

their notifications and are on board with the new setting.

You could issue the SystemParametersInfo
call without the SPIF_SENDCHANGE flag,
then

manually broadcast the change via

DWORD dwResult;

SendMessageTimeout(HWND_BROADCAST, WM_SETTINGCHANGE,

 SPI_SETDOUBLECLICKTIME, 0,

 SMTO_ABORTIFHUNG | SMTO_NOTIMEOUTIFNOTHUNG,

 5000, &dwResult);

https://devblogs.microsoft.com/oldnewthing/20050310-00/?p=36233
http://msdn.microsoft.com/library/en-us/sysinfo/base/systemparametersinfo.asp
http://msdn.microsoft.com/library/en-us/sysinfo/base/wm_settingchange.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/messagesandmessagequeues/messagesandmessagequeuesreference/messagesandmessagequeuesfunctions/sendmessagetimeout.asp

2/2

This does mean that unresponsive windows will not receive the
notification that a system

parameter has changed.
This is acceptable if you decide
that your change in settings was

minor enough
that a program missing the notification is no big deal.
In other words, when

the unresponsive program finally wakes up,
it will not know that the setting has changed

since it missed
the notification.

You can combine the above two methods: Use a background thread
and send the message

with a timeout.

Perhaps the best technique is to use
the SendNotifyMessage function.
As we learned earlier,

the SendNotifyMessage function
is like SendMessage except that it doesn’t wait
for a

response. This lets your program get back work while
not messing up programs that were

momentarily unresponsive
when you decided to broadcast the notification.

SendNotifyMessage(HWND_BROADCAST, WM_SETTINGCHANGE,

 SPI_SETDOUBLECLICKTIME, 0);

The downside is that you don’t know when all windows
have finally received and processed

the notification.
All you know is that someday, they will eventually find out.
Usually you don’t

care about this aspect of the broadcast,
so this lack of information is not an impediment.

Raymond Chen

Follow

http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/MessagesandMessageQueues/MessagesandMessageQueuesReference/MessagesandMessageQueuesFunctions/SendNotifyMessage.asp
http://blogs.msdn.com/oldnewthing/archive/2004/11/19/266664.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

