
1/2

March 8, 2005

Keep your eye on the code page
devblogs.microsoft.com/oldnewthing/20050308-00

Raymond Chen

Remember that there are typically two 8-bit code pages active, the so-called “ANSI” code

page and the so-called “OEM” code page. GUI programs usually use the ANSI code page for

8-bit files (though utf-8 is becoming more popular lately), whereas console programs usually

use the OEM code page.

This means, for example, when you open an 8-bit text file in Notepad, it assumes the ANSI

code page. But if you use the TYPE command from the command prompt, it will use the OEM

code page.

This has interesting consequences if you switch between the GUI and the command line

frequently.

The two code pages typically agree on the first 128 characters, but they nearly always disagree

on the characters from 128 to 255 (so-called “extended characters”). For example, on a US-

English machine, character 0x80 in the OEM code page is Ç, whereas in the ANSI code page

it is €.

Consider a directory which contains a file named Ç. If you type “dir” at a command prompt,

you see a happy Ç on the screen. On the other hand, if you do “dir >files.txt” and open

files.txt in a GUI editor like Notepad, you will find that the Ç has changed to a €, because the

0x80 in the file is being interpreted in the ANSI character set instead of the OEM character

set.

Stranger yet, if you mark/select the file name from the console window and paste it into

Notepad, you get a Ç. That’s because the console window’s mark/select code saves text on the

clipboard as Unicode; the character saved into the clipboard is not 0x80 but rather U+00C7,

the Unicode code point for “Latin Capital Letter C With Cedilla”. When this is pasted into

Notepad, it gets converted from Unicode to the ANSI code page, which on a US-English

system encodes the Ç character as 0xC7.

But wait, there’s more. The command processor has an option (/U) to generate all piped and

redirected output in Unicode rather than the OEM code page.

https://devblogs.microsoft.com/oldnewthing/20050308-00/?p=36253


2/2

(Note that the built-in documentation for the command processor says that the /A switch

produces ANSI output; this is incorrect. /A produces OEM output. This is one of those bugs

that you recognize instantly if you are familiar with what is going on. It’s so obviously OEM

that when I see the documentation say “ANSI”, my mind just reads it as “OEM”. In the same

way native English speakers often fail to notice misspellings or doubled words.)

If you run the command

cmd /U /C dir ^>files.txt


then the output will be in Unicode and therefore will record the Ç character as U+00C7,

which Notepad will then be able to read back.

This has serious consequences for batch files.

Batch files are 8-bit files and are interpreted according to the OEM character set. This means

that if you write a batch file with Notepad or some other program that uses the ANSI

character set for 8-bit files, and your batch file contains extended characters, the results you

get will not match the what you see in your editor.

Why the discrepancy between GUI programs and console programs over how 8-bit

characters should be interpreted?

The reason is, of course, historical.

Back in the days of MS-DOS, the code page was what today is called the OEM code page. For

US-English systems, this is the code page with the box-drawing characters and the fragments

of the integral signs. It contained accented letters, but not a very big set of them, just enough

to cover the German, French, Spanish, and Italian languages. And Swedish. (Why Swedish

yet not Danish and Norwegian I don’t know.)

When Windows came along, it decided that those box-drawing characters were wasting

valuable space that could be used for adding still more accented characters, so out went the

box-drawing characters and in went characters for Danish, Norwegian, Icelandic, and

Canadian French. (Yes, Canadian French uses characters that European French does not.)

Thus began the schism between console programs (MS-DOS) and GUI programs (Windows)

over how 8-bit character data should be interpreted.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

