
1/3

February 23, 2005

Modality, part 4: The importance of setting the correct
owner for modal UI

devblogs.microsoft.com/oldnewthing/20050223-00

Raymond Chen

If you decide to display some modal UI, it is important that
you set the correct owner for that

UI. If you fail to heed
this rule, you will find yourself chasing some very strange bugs.

Let’s return to
our scratch program and intentionally introduce a bug
related to incorrect

owner windows, so that we can see the
consequences.

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

 switch (ch) {

 case ' ':

 // Wrong!

 MessageBox(NULL, TEXT("Message"), TEXT("Title"), MB_OK);

 if (!IsWindow(hwnd)) MessageBeep(-1);

 break;

 }

}

// Add to WndProc

 HANDLE_MSG(hwnd, WM_CHAR, OnChar);

Run this program, press the space bar, and instead of dismissing
the message box, click the

“X” button in the corner of the main
window. Notice that you get a beep before the program

exits.

What happened?

The beep is coming from our call to
the MessageBeep function,
which in turn is telling us that

our window handle is no longer valid.
In a real program which kept its state in per-window

instance variables
(instead of in globals like we do),
you would more likely crash
because all

the instance variables would have gone away when the
window was destroyed. In this case,

the window was destroyed while
inside a nested modal loop. As a result, when control

returned to
the caller, it is now a method running inside an object that has been
destroyed.

Any access to an instance variable is going to access
memory that was already freed, resulting

in memory corruption or an
outright crash.

https://devblogs.microsoft.com/oldnewthing/20050223-00/?p=36383
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx
http://msdn.microsoft.com/library/en-us/debug/base/messagebeep.asp

2/3

Here’s an explanation in a call stack diagram:

WinMain

 DispatchMessage(hwnd, WM_CHAR)

 OnChar

 MessageBox(NULL)

 ... modal dialog loop ...

 DispatchMessage(hwnd, WM_CLOSE)

 DestroyWindow(hwnd)

 WndProc(WM_DESTROY)

 ... clean up the window ...

When you clean up the window, you typically destroy all the
data structures associated with

the window. But notice that
you are freeing data structures that are still being used
by the

OnChar handler deeper in the stack.
Eventually, control unwinds back to the OnChar ,

which is now running with an invalid instance pointer.
(If you believe in C++ objects, you

would find that its “this”
pointer has gone invalid.)

This was caused by
failing to set the correct owner for the
modal MessageBox call, allowing

the user to
interact with the frame window at a time when the frame window
isn’t expecting

to have its state changed.

Even more problematic, the user can switch back to the frame
window and hit the space bar

again. The result: Another
message box. Repeat another time and you end up with a stack

that
looks like this:

WinMain

 DispatchMessage(hwnd, WM_CHAR)

 OnChar

 MessageBox(NULL)

 ... modal dialog loop ...

 DispatchMessage(hwnd, WM_CHAR)

 OnChar

MessageBox(NULL)

 ... modal dialog loop ...

 DispatchMessage(hwnd, WM_CHAR)

 OnChar

 MessageBox(NULL)

 ... modal dialog loop ...

There are now four top-level windows, all active. If the user
dismisses them in any order

other than the reverse order in
which they were created, you’re going to have a problem on

your
hands. For example, if the user dismisses the second message box
first, the part of the

stack corresponding to that nesting level
will end up returning to a destroyed window when

the third message
box is finally dismissed.

The fix is simple, and we’ll pick up there next time.

Raymond Chen

http://groups-beta.google.com/group/comp.os.ms-windows.programmer.win32/msg/850b8e9e80c4cbae
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

