
1/3

February 22, 2005

Modality, part 3: The WM_QUIT message
devblogs.microsoft.com/oldnewthing/20050222-00

Raymond Chen

After
our two quick introductions
to modality,
we’re now going to dig in a little deeper.

The trick with modality is that when you call a modal function,
the responsibility of message

dispatch is handled by that function
rather than by your main program. Consequently, if you

have
customized your main program’s message pump, those customizations
are lost once you

lose control to a modal loop.

The other important thing about modality is that a
WM_QUIT message always breaks the

modal loop.
Remember this in your own modal loops! If ever
you call
the PeekMessage

function
or
The [typo fixed 10:30am] GetMessage function and get
a WM_QUIT
message, you

must not only exit your modal loop, but
you must also re-generate the WM_QUIT message

(via
the PostQuitMessage message)
so the next outer layer will see the WM_QUIT message

and do its cleanup as well. If you fail to propagate
the message, the next outer layer will not

know that it
needs to quit, and the program will seem to “get stuck”
in its shutdown code,

forcing the user to
terminate the process the hard way.

In a later series, we’ll see how this convention surrounding
the WM_QUIT message is useful.

But for now, here’s
the basic idea of how your modal loops should re-post
the quit message to

the next outer layer.

https://devblogs.microsoft.com/oldnewthing/20050222-00/?p=36393
http://blogs.msdn.com/oldnewthing/archive/2005/02/18/376080.aspx
http://blogs.msdn.com/oldnewthing/archive/2005/02/21/377337.aspx
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/Windows/WindowReference/WindowMessages/WM_QUIT.asp
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/MessagesandMessageQueues/MessagesandMessageQueuesReference/MessagesandMessageQueuesFunctions/PeekMessage.asp
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/MessagesandMessageQueues/MessagesandMessageQueuesReference/MessagesandMessageQueuesFunctions/GetMessage.asp
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/MessagesandMessageQueues/MessagesandMessageQueuesReference/MessagesandMessageQueuesFunctions/PostQuitMessage.asp

2/3

BOOL WaitForSomething(void)

{

 MSG msg;

 BOOL fResult = TRUE; // assume it worked

 while (!SomethingFinished()) {

 if (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 } else {

 // We received a WM_QUIT message; bail out!

 CancelSomething();

 // Re-post the message that we retrieved

 PostQuitMessage(msg.wParam);

 fResult = FALSE; // quit before something finished

 break;

 }

 }

 return fResult;

}

Suppose your program starts some operation and then calls
 WaitForSomething() .
While

waiting for something to finish, some other part of your
program decides that it’s time to exit.

(Perhaps the user clicked on a “Quit” button.)
That other part of the program will call

PostQuitMessage(wParam)
to indicate that the message loop should terminate.

The posted quit message will first be retrieved by the
 GetMessage in the

WaitForSomething function.
The GetMessage function returns FALSE if
the retrieved

message is a WM_QUIT message.
In that case, the “else” branch of the conditional is taken,

which
cancels the “Something” operation in progress, then posts
the quit message back into

the message queue for the next
outer message loop to handle.

When WaitForSomething returns, control presumably will fall
back out into the program’s

main message pump. The main message
pump will then retrieve the WM_QUIT message and

do its
exit processing before finally exiting the program.

And if there were additional layers of modality between
 WaitForSomething and the

program’s main message pump,
each of those layers would retrieve the WM_QUIT message,

do their cleanup, and then re-post the WM_QUIT message
(again, via PostQuitMessage)

before exiting the loop.

In this manner, the WM_QUIT message gets handed from modal
loop to modal loop, until it

reaches the outermost loop, which
terminates the program.

“But wait,” I hear you say. “Why do I have to do all this
fancy WM_QUIT footwork? I could

just have a private little
global variable named something like g_fQuitting . When
I want

the program to quit, I just set this variable, and all
of my modal loops check this variable and

exit prematurely if it
is set. Something like this:

3/3

BOOL MyWaitForSomething(void) // code in italics is wrong

{

 MSG msg;

 while (!SomethingFinished()) {

 if (g_fQuitting) {

 CancelSomething();

 return FALSE;

 }

 if (GetMessage(&msg, NULL, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

 return TRUE;

}

And so I can solve the problem of the nested quit without needing
to do all this

PostQuitMessage rigamarole.”

And you’d be right, if you controlled every single modal loop in
your program.

But you don’t.

For example, when you call
the DialogBox function,
the dialog box code
runs its own private

modal loop to do the dialog box UI until
you get around to calling
the EndDialog function.

And whenever the user
clicks on any of your menus, Windows runs its own private
modal

loop to do the menu UI. Indeed, even the resizing of
your application’s window is handled by

a Windows modal loop.

Windows, of course, has no knowledge of your little
 g_fQuitting variable, so it has no idea

that you want
to quit. It is the WM_QUIT message that serves this
purpose of co-ordinating

the intention to quit among separate
parts of the system.

Notice that this convention regarding the WM_QUIT
message cuts both ways. You can use

this convention to cause
modal loops to exit (we’ll see more of this later), but it also
obliges

you to respect this convention so that
other components (including the window manager

itself)
can get your modal loops to exit.

Raymond Chen

Follow

http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/dialogboxes/dialogboxreference/dialogboxfunctions/dialogbox.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/windowing/dialogboxes/dialogboxreference/dialogboxfunctions/enddialog.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

