
1/3

February 18, 2005

Modality, part 1: UI-modality vs code-modality
devblogs.microsoft.com/oldnewthing/20050218-00

Raymond Chen

From the end-users’ point of view, modality occurs when the
users are locked into

completing a task once it is begun,
with the only escape being to cancel the entire operation.

Opening a file is an example of a modal operation:
Once the “Open” command has been

selected, users have
no choice but to select a file for opening (or to cancel
the operation).

While attempting to open a document,
the users cannot interact with the existing
document

(for example, scroll it around to look for some
text that would give a clue as to what file to

open next).

From a programmer’s point of view, modality can be
viewed as a function that performs

some UI and doesn’t
return until that UI is complete.
In other words, modality is
a nested

message loop that continues processing
messages until some exit condition is reached.
In our

example above, the modality is inherent in
the GetOpenFileName function, which does not

return
until the user selects a filename or cancels the dialog box.

Note that these concepts do not necessarily agree.
You can create something that is UI-modal

—that is,
does not let the user interact with the main window
until some other action is

complete—while internally
coding it as a non-modal function.

Let’s code up an example of this behavior,
to drive the point home.

As always,
start with our scratch program.

https://devblogs.microsoft.com/oldnewthing/20050218-00/?p=36413
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/3

#include <commdlg.h>

HWND g_hwndFR;

TCHAR g_szFind[80];

FINDREPLACE g_fr = { sizeof(g_fr) };

UINT g_uMsgFindMsgString;

void CreateFindDialogUIModally(HWND hwnd)

{

 if (!g_hwndFR) {

 g_uMsgFindMsgString = RegisterWindowMessage(FINDMSGSTRING);

 if (g_uMsgFindMsgString) {

 g_fr.hwndOwner = hwnd;

 g_fr.hInstance = g_hinst;

 g_fr.lpstrFindWhat = g_szFind;

 g_fr.wFindWhatLen = 80;

 g_hwndFR = FindText(&g_fr);

 }

 }

}

void OnChar(HWND hwnd, TCHAR ch, int cRepeat)

{

 switch (ch) {

 case ' ': CreateFindDialogUIModally(hwnd); break;

 }

}

void OnFindReplace(HWND hwnd, FINDREPLACE *pfr)

{

 if (pfr->Flags & FR_DIALOGTERM) {

 DestroyWindow(g_hwndFR);

 g_hwndFR = NULL;

 }

}

// Add to WndProc

 HANDLE_MSG(hwnd, WM_CHAR, OnChar);

 default:

 if (uiMsg == g_uMsgFindMsgString && g_uMsgFindMsgString) {

 OnFindReplace(hwnd, (FINDREPLACE*)lParam);

 }

 break;

// Edit WinMain

 while (GetMessage(&msg, NULL, 0, 0)) {

 if (g_hwndFR && IsDialogMessage(g_hwndFR, &msg)) {

 } else {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 }

This is an unexciting example of a modeless dialog;
in our case, the Find dialog is displayed

when you hit the space bar. Observe that you can click
back to the main window while the

Find dialog is up;
that’s because the Find dialog is modeless.
As is typical for modeless

3/3

dialogs, dispatching its
messages is handled in the main message loop with
a call to
the

IsDialogMessage function.

We can turn this into a UI-modal dialog very simply:

void CreateFindDialogUIModally(HWND hwnd)

{

 if (!g_hwndFR) {

 g_uMsgFindMsgString = RegisterWindowMessage(FINDMSGSTRING);

 if (g_uMsgFindMsgString) {

 g_fr.hwndOwner = hwnd;

 g_fr.hInstance = g_hinst;

 g_fr.lpstrFindWhat = g_szFind;

 g_fr.wFindWhatLen = 80;

 g_hwndFR = FindText(&g_fr);

 if (g_hwndFR) {

 EnableWindow(hwnd, FALSE);

 }

 }

 }

}

void OnFindReplace(HWND hwnd, FINDREPLACE *pfr)

{

 if (pfr->Flags & FR_DIALOGTERM) {

 EnableWindow(hwnd, TRUE);

 DestroyWindow(g_hwndFR);

 g_hwndFR = NULL;

 }

}

Notice that we carefully observed
the rules for enabling and disabling windows.

When you run this modified program, everything seems the
same except that the Find dialog

is now modal. You can’t
interact with the main window until you close the Find
dialog. The

Find dialog is modal in the UI sense.
However, the code is structured in the non-modal

manner.
There is no dialog loop; the main window
loop dispatches dialog messages as

necessary.

One typically does not design one’s modal UI in this manner
because it makes the code

harder to structure.
Observe, for example, that the code to manage the dialog box
is scattered

about and the management of the dialog needs to
be handled as a state machine since each

phase returns back
to the main message loop.

Raymond Chen

Follow

http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/Windowing/DialogBoxes/DialogBoxReference/DialogBoxFunctions/IsDialogMessage.asp
http://blogs.msdn.com/oldnewthing/archive/2004/02/27/81155.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

