
1/2

February 15, 2005

You cannot globally reserve user-mode address space
devblogs.microsoft.com/oldnewthing/20050215-00

Raymond Chen

Occasionally, somebody asks for a way to reserve user-mode address space globally. In other

words, they want to allocate address space in all processes in the system (current and future).

Typically this is because they want to map some memory into each process and don’t want to

go through the trouble of designing the shared memory blocks so that they can be relocated.

This is obviously not possible.
Why obviously? Well, imagine if this were possible.
“Imagine if

this were possible” is one of the logic tests you can apply to a theory to see if it can possibly be

true. Here, we’re using it to determine whether a proposed behavior is possible. [Typo fixed

10am.] (There is a corresponding thought experiment, “Imagine if things actually worked

that way.”)
What are the consequences of global address space allocation?
Well, first of all,

there’s no guarantee that by the time you request your global address space, there will be any

available addresses at all. Consider a program that uses every last scrape of user-mode

address space. (It can do this by just calling VirtualAlloc(MEM_RESERVE) in a loop; since

no memory is being committed, this doesn’t actually require 2GB of RAM.) Run such a

program and no global address space allocations are possible until that program exits.
So

even if it were possible, it wouldn’t be reliable. Your program would have to be prepared for

the situation where no global address space was available. Since you’re going to have to write

fallback code anyway, you didn’t save yourself any work.
Next, suppose it were possible, that

there were some imaginary GlobalVirtualAlloc function. Well, then I can write a

program that calls this imaginary function in a loop, sucking up all available global virtual

address space, and run it as a non-administrator.
I just violated security. (The general

principle here is that a non-administrator should not be allowed to affect other users. We’ve

already seen one scenario where a non-administrator can crash a program running as

administrator due to insecure use of shared memory.)
My imaginary program sucked up all

global virtual address space, reducing the address space available to programs running as

administrator. If there aren’t many programs running on the system, my imaginary program

will probably be able to suck up quite a lot of address space this way, which in turn will cause

a corresponding reduction in address space to those administrative programs. I can therefore

cause those programs to run out of address space sooner, resulting in premature failure

(denial of service).
Yes, you could decide that “global” address space reservation is available

only to administrators, but that wouldn’t help a lazy programmer, since the program would

not work when run as a non-administrator – you have to write the fallback code anyway. Or

https://devblogs.microsoft.com/oldnewthing/20050215-00/?p=36443
http://blogs.msdn.com/oldnewthing/archive/2004/08/04/208003.aspx

2/2

you could decide that “global” address space reservation applies only to users within the

same session with the same security token, but again, you have to write the fallback code

anyway if the global reservation fails; you didn’t save yourself any work. When the time

comes, you can use VirtualAlloc and pass a preferred address to try to get the memory at

that address; if it fails, then use the fallback code that you already wrote.

The moral of the story is that each process gets its own address space and each process

manages its address space independently of other processes. (Of course, a process can grant a

user PROCESS_VM_OPERATION permission, which gives that user permission to mess with

the address space of that process. But changes to that process’s address space does not affect

the address space of other processes.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

