
1/2

February 14, 2005

LoadLibraryEx(DONT_RESOLVE_DLL_REFERENCES) is
fundamentally flawed

devblogs.microsoft.com/oldnewthing/20050214-00

Raymond Chen

There is a flag to
the LoadLibraryEx function
called
 DONT_RESOLVE_DLL_REFERENCES .
The

documentation says,

If this value is used, and the executable module is a DLL,
the system does not call
DllMain for
process and thread initialization and termination.
Also, the system does not load additional
executable modules
that are referenced by the specified module.

If you are planning only to access data or resources in the DLL,
it is better to use
LOAD_LIBRARY_AS_DATAFILE.

In my opinion, the above text that “suggests” the
 LOAD_LIBRARY_AS_DATAFILE flag is not

strong enough.

DONT_RESOLVE_DLL_REFERENCES is a time bomb.

Look carefully at what the flag does and doesn’t do.
The module is loaded into memory, but

its initialization
function is not called and no dependent DLLs are loaded.
[Typo fixed,

10am.]
As a result, you cannot run code from this DLL.
(More accurately, if you try, it will

crash because the DLL
hasn’t initialized itself and none of its imports to
DLLs have been

resolved.)
However, unlike the
 LOAD_LIBRARY_AS_DATAFILE flag,
the loaded DLL can be

found by
 GetModuleHandle and can be used by
 GetProcAddress .

Clearly, GetProcAddress is a bad idea for
something loaded by

DONT_RESOLVE_DLL_REFERENCES , because
as we already noted, you can’t run any code from

the DLL.
What’s the point of getting a procedure address from a DLL
if you can’t call it, after

all?

The GetModuleHandle part triggers the time bomb.

It is common for somebody to call
 GetModuleHandle to see
if a DLL is loaded, and if so, use

GetProcAddress to get a procedure address and
call it. If the DLL had been loaded with

DONT_RESOLVE_DLL_REFERENCES , both the
 GetModuleHandle will succeed, but the

https://devblogs.microsoft.com/oldnewthing/20050214-00/?p=36463
http://msdn.microsoft.com/library/en-us/dllproc/base/loadlibraryex.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/dllmain.asp

2/2

resulting
function will crash when called.
The code doing this has no idea that the DLL was

loaded
with
 DONT_RESOLVE_DLL_REFERENCES ; it has no way
of protecting itself.

(Note that code that does this is unsafe anyway, because
the code that originally loaded the

DLL might decide to
do a FreeLibrary on another thread, causing
the code to be ripped

out from underneath the first thread.
This second problem can be “fixed” by using

GetModuleHandleEx , which can be instructed to
increment the DLL reference count, but

that doesn’t fix the
first problem.)

Even if you used LoadLibrary to load the DLL
and passed that handle to

GetProcAddress ,
you still crash, because the LoadLibrary
notices that the DLL is

already loaded and merely increments
the reference count.

#include <windows.h>

typedef HINSTANCE (WINAPI *SXA)(HWND, LPCSTR, LPCSTR,

 LPCSTR, LPCSTR, int);

int __cdecl main(int argc, char* argv[])

{

if (argc > 1) // set the time bomb

 LoadLibraryEx("shell32.dll", NULL, DONT_RESOLVE_DLL_REFERENCES);

// victim code runs here

HINSTANCE h = LoadLibrary("shell32.dll");

if (h) {

 SXA f = (SXA)GetProcAddress(h, "ShellExecuteA");

 if (f) {

 f(NULL, NULL, "notepad.exe", NULL, NULL, SW_SHOWNORMAL);

 }

 FreeLibrary(h);

}
}

If you run this program with no command line arguments, then
everything works just fine:

Notepad is launched without
incident.
However, if you pass a command line argument, this

sets the time bomb,
and the call to ShellExecuteA crashes in flames because
shell32.dll was

loaded without having its DLL references resolved.

In other words,
 DONT_RESOLVE_DLL_REFERENCES is fundamentally flawed
and should be

avoided.
It continues to exist solely for backwards compatibility.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

