
1/2

January 31, 2005

Why did the Win64 team choose the LLP64 model?
devblogs.microsoft.com/oldnewthing/20050131-00

Raymond Chen

Over on Channel 9,
member Beer28 wrote,
“I can’t imagine there are too many problems

with programs
that have type widths changed.”
I got a good chuckle out of that and made a

note to write up
an entry on the Win64 data model.

The Win64 team selected the LLP64 data model,
in which all integral types remain 32-bit

values and only
pointers expand to 64-bit values.
Why?

In addition to the reasons give on that web page, another reason is
that doing so avoids

breaking persistence formats.
For example, part of the header data for a bitmap file is defined

by the following structure:

typedef struct tagBITMAPINFOHEADER {

 DWORD biSize;

 LONG biWidth;

 LONG biHeight;

 WORD biPlanes;

 WORD biBitCount;

 DWORD biCompression;

 DWORD biSizeImage;

 LONG biXPelsPerMeter;

 LONG biYPelsPerMeter;

 DWORD biClrUsed;

 DWORD biClrImportant;

} BITMAPINFOHEADER, FAR *LPBITMAPINFOHEADER, *PBITMAPINFOHEADER;

If a LONG expanded from a 32-bit value to a 64-bit value,
it would not be possible for a 64-

bit program to use this structure
to parse a bitmap file.

There are persistence formats other than files.
In addition to the obvious things like RPC and

DCOM,
registry binary blobs and shared memory blocks can also be used
to transfer

information between processes.
If the source and
destination processes are different bitness,

any change to the
integer sizes would result in a mismatch.

https://devblogs.microsoft.com/oldnewthing/20050131-00/?p=36563
https://channel9.msdn.com/
http://msdn.microsoft.com/library/en-us/win64/win64/abstract_data_models.asp

2/2

Notice that in these inter-process communication scenarios,
we don’t have to worry as much

about the effect of a changed
pointer size. Nobody in their right mind would transfer
a

pointer across processes: Separate address spaces mean that
the pointer value is useless in

any process other than the one
that generated it, so why share it?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

