
1/4

January 14, 2005

Cleaner, more elegant, and harder to recognize
devblogs.microsoft.com/oldnewthing/20050114-00

Raymond Chen

It appears that some people interpreted the title of
one of my rants from many months ago,

“Cleaner, more elegant, and wrong”,
to be
a reference to exceptions in general.
(See

bibliography reference [35]; observe that the citer
even changed the title of my article for

me!)

The title of the article was a reference to a specific code snippet
that I copied from a book,

where the book’s author claimed that
the code he presented was “cleaner and more elegant”.

I was pointing out that the code fragment was not only cleaner
and more elegant, it was also

wrong.

You can write correct exception-based programming.

Mind you, it’s hard.

On the other hand, just because something is hard doesn’t mean
that it shouldn’t be done.

Here’s a breakdown:

Really easy Hard Really hard

Writing bad error-code-
based code

Writing bad exception-
based code

Writing good error-code-
based code

Writing good exception-
based code

It’s easy to write bad code, regardless of the error model.

It’s hard to write good error-code-based code since you have to check
every error code and

think about what you should do when an error occurs.

It’s really hard to write good exception-based
code since you have to check every single line

of code (indeed,
every sub-expression) and think
about what exceptions it might raise and

how your code will react to it.
(In C++ it’s not quite so bad because C++ exceptions are raised

https://devblogs.microsoft.com/oldnewthing/20050114-00/?p=36693
https://devblogs.microsoft.com/oldnewthing/archive/2004/04/22/118161.aspx
http://www.google.com/search?q=cache:www.cs.wisc.edu/condor/doc/thain-dissertation.ps

2/4

only
at specific points during execution.
In C#, exceptions can be raised at any time.)

But that’s okay. Like I said, just because something is hard
doesn’t mean it shouldn’t be done.

It’s hard to write a device driver, but people do it,
and that’s a good thing.

But here’s another table:

Really easy Hard Really hard

Recognizing that error-code-
based code is badly-written

Recognizing the difference
between bad error-code-based
code and
not-bad error-code-
based code.

Recognizing that
error-code-base
code is not
badly-written

Recognizing that exception-
based code is badly-written

Recognizing that exception-
based code is not badly-
written

Recognizing the difference
between bad exception-based
code
and not-bad exception-
based code

Here’s some imaginary error-code-based code. See if you can
classify it as “bad” or “not-bad”:

BOOL ComputeChecksum(LPCTSTR pszFile, DWORD* pdwResult)

{

 HANDLE h = CreateFile(pszFile, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 HANDLE hfm = CreateFileMapping(h, NULL, PAGE_READ, 0, 0, NULL);

 void *pv = MapViewOfFile(hfm, FILE_MAP_READ, 0, 0, 0);

 DWORD dwHeaderSum;

 CheckSumMappedFile(pvBase, GetFileSize(h, NULL),

 &dwHeaderSum, pdwResult);

 UnmapViewOfFile(pv);

 CloseHandle(hfm);

 CloseHandle(h);

 return TRUE;

}

This code is obviously bad. No error codes are checked.
This is the sort of code you might

write when in a hurry,
meaning to come back to and improve later.
And it’s easy to spot that

this code needs to be improved big time
before it’s ready for prime time.

Here’s another version:

3/4

BOOL ComputeChecksum(LPCTSTR pszFile, DWORD* pdwResult)

{

 BOOL fRc = FALSE;

 HANDLE h = CreateFile(pszFile, GENERIC_READ, FILE_SHARE_READ,

 NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

 if (h != INVALID_HANDLE_VALUE) {

 HANDLE hfm = CreateFileMapping(h, NULL, PAGE_READ, 0, 0, NULL);

 if (hfm) {

 void *pv = MapViewOfFile(hfm, FILE_MAP_READ, 0, 0, 0);

 if (pv) {

 DWORD dwHeaderSum;

 if (CheckSumMappedFile(pvBase, GetFileSize(h, NULL),

 &dwHeaderSum, pdwResult)) {

 fRc = TRUE;

 }

 UnmapViewOfFile(pv);

 }

 CloseHandle(hfm);

 }

 CloseHandle(h);

 }

 return fRc;

}

This code is still wrong, but it clearly looks like
it’s trying to be right. It is what I call “not-

bad”.

Now here’s some exception-based code you might write in a hurry:

NotifyIcon CreateNotifyIcon()

{

NotifyIcon icon = new NotifyIcon();

icon.Text = "Blah blah blah";

icon.Visible = true;

icon.Icon = new Icon(GetType(), "cool.ico");

return icon;

}

(This is actual code from a real program in an article about
taskbar notification icons, with

minor changes
in a futile attempt to disguise the source.)

Here’s what it might look like after you fix it to be correct
in the face of exceptions:

NotifyIcon CreateNotifyIcon()

{

NotifyIcon icon = new NotifyIcon();

icon.Text = "Blah blah blah";

icon.Icon = new Icon(GetType(), "cool.ico");

icon.Visible = true;

return icon;

}

4/4

Subtle, isn’t it.

It’s easy to spot the difference between bad error-code-based code
and not-bad error-code-

based code: The not-bad error-code-based code
checks error codes. The bad error-code-

based code never does.
Admittedly, it’s hard to tell whether the errors were handled

correctly, but at least you can tell the difference between
bad code and code that isn’t bad. (It

might not be good, but at least
it isn’t bad.)

On the other hand, it is extraordinarily difficult to see the
difference between bad exception-

based code and not-bad
exception-based code.

Consequently, when I write code that is exception-based,
I do not have the luxury of writing

bad code first and then
making it not-bad later. If I did that, I wouldn’t be able to find
the

bad code again, since it looks almost identical to not-bad code.

My point isn’t that exceptions are bad.
My point is that exceptions are too hard and I’m not

smart
enough to handle them. (And neither, it seems, are book authors,
even when they are

trying to teach you how to program with exceptions!)

(Yes, there are programming models like RAII and transactions,
but rarely do you see sample

code that uses either.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

