
1/3

January 6, 2005

A rant against flow control macros
devblogs.microsoft.com/oldnewthing/20050106-00

Raymond Chen

I try not to rant, but it happens sometimes.
This time, I’m ranting on purpose: to complain

about
macro-izing flow control.

No two people use the same macros, and
when you see code that uses them you have to go

dig through header files to figure out what they do.

This is particularly gruesome when you’re trying to
debug a problem with some code that

somebody else wrote.
For example, say you see a critical section entered
and you want to

make sure
that all code paths out of the function release the
critical section. It would

normally be as simple as
searching for “return” and “goto” inside the function body,
but if the

author of the program hid those operations
behind macros, you would miss them.

HRESULT SomeFunction(Block *p)

{

HRESULT hr;

EnterCriticalSection(&g_cs);

VALIDATE_BLOCK(p);

MUST_SUCCEED(p->DoSomething());

if (andSomethingElse) {

 LeaveCriticalSection(&g_cs);

 TRAP_FAILURE(p->DoSomethingElse());

 EnterCriticalSection(&g_cs);

}
hr = p->DoSomethingAgain();

Cleanup:

LeaveCriticalSection(&g_cs);

return hr;

}

[Update: Fixed missing parenthesis in code that was never
meant to be compiled anyway.

Some people are so picky. – 10:30am]

Is the critical section leaked?
What happens if the BLOCK fails to validate?
If

DoSomethingElse fails, does DoSomethingAgain get called?
What’s with that unused

“Cleanup” label?
Is there a code path that leaves the “hr” variable
uninitialized?

https://devblogs.microsoft.com/oldnewthing/20050106-00/?p=36783

2/3

You won’t know until you go dig up the header file that
defined the VALIDATE_BLOCK,

TRAP_FAILURE, and MUST_SUCCEED macros.

(Yes, the critical section question could be avoided by
using a lock object with destructor, but

that’s not my point.
Note also that this function temporarily exits the critical section.
Most

lock objects don’t support that sort of thing,
though it isn’t usually that hard to add, at the

cost of
a member variable.)

When you create a flow-control macro, you’re modifying the language.
When I fire up an

editor on a file whose name ends in “.cpp” I expect
that what I see will be C++ and not some

strange dialect
that strongly resembles C++ except in the places where it doesn’t.
(For this

reason, I’m pleased that C# doesn’t support macros.)

People who still prefer flow-control macros should be
sentenced to maintaining the original

Bourne shell.
Here’s a fragment:

ADDRESS	alloc(nbytes)

 POS	 nbytes;

{

 REG POS	 rbytes = round(nbytes+BYTESPERWORD,BYTESPERWORD);

 LOOP INT	 c=0;

REG BLKPTR p = blokp;

REG BLKPTR q;

REP IF !busy(p)

 THEN WHILE !busy(q = p->word) DO p->word = q->word OD

	 IF ADR(q)-ADR(p) >= rbytes

	 THEN	 blokp = BLK(ADR(p)+rbytes);

	 IF q > blokp

	 THEN blokp->word = p->word;

	 FI

	 p->word=BLK(Rcheat(blokp)|BUSY);

	 return(ADR(p+1));

	 FI

 FI

 q = p; p = BLK(Rcheat(p->word)&~BUSY);

PER p>q ORF (c++)==0 DONE

addblok(rbytes);

 POOL

}

Back in its day, this code was
held up as an example of “death by macros”, code that relied
so

heavily on macros that nobody could understand it.
What’s scary is that by today’s standards,

it’s quite tame.

(This rant is a variation on
one of my earlier rants, if you think about it.
Exceptions are a

form of nonlocal control flow.)

http://blogs.msdn.com/oldnewthing/archive/2004/04/22/118161.aspx

3/3

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

