
1/2

January 5, 2005

PulseEvent is fundamentally flawed
devblogs.microsoft.com/oldnewthing/20050105-00

Raymond Chen

The PulseEvent function
releases one thread (or all threads, if manual-reset)
which is/are

waiting for the pulsed event, then returns the
event to the unset state.
If no threads happen

to be waiting, then the event goes to
the unset state without anything happening.

And there’s the flaw.

How do you know whether the thread that you think is waiting on
the event really is?
Surely

you can’t use something like

SignalSemaphore(hOtherSemaphore);

WaitForSingleObject(hEvent, INFINITE);

because there is a race between the signal and the wait.
The thread that the semaphore is

alerting might complete
all its work and pulse the event before you get around to
waiting for

it.

You can try using
the SignalObjectAndWait function,
which combines the signal and wait

into a single operation.
But even then, you can’t be sure that the thread is waiting
for the

event at the moment of the pulse.

While the thread is sitting waiting for the event,
a device driver or part of the kernel itself

might ask to borrow the thread to do some
processing (by means of a “kernel-mode APC”).

During that time, the thread is not in the
wait state.
(It’s being used by the device driver.)
If

the PulseEvent happens while the thread
is being “borrowed”, then it will not
be woken

from the wait, because the PulseEvent
function wakes only threads that were waiting
at

the time the PulseEvent occurs.

Not only are you (as a user-mode program) unable to prevent
kernel mode from doing this to

your thread,
you cannot even detect that it has occurred.

(One place where you are likely to see this sort of thing happening
is if you have the debugger

attached to the process, since the
debugger does things like suspend and resume threads,

which result in kernel APCs.)

https://devblogs.microsoft.com/oldnewthing/20050105-00/?p=36803
http://msdn.microsoft.com/library/en-us/dllproc/base/pulseevent.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/signalobjectandwait.asp

2/2

As a result, the PulseEvent function is useless
and should be avoided. It continues to exist

solely for backwards
compatibility.

Sidebar:
This whole business with kernel APCs also means that you cannot
predict which

thread will be woken when you signal a semaphore,
an auto-reset event, or some other

synchronization object that
releases a single thread when signalled. If a thread is “borrowed”

to service a kernel APC, then when it is returned to the wait list,
it “goes back to the end of

the line”.
Consequently, the order of objects waiting for a kernel object
is unpredictable and

cannot be relied upon.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

