
1/3

January 4, 2005

Using fibers to simplify enumerators, part 5: Composition
devblogs.microsoft.com/oldnewthing/20050104-00

Raymond Chen

Another type of higher-order enumeration is composition,
where one enumerator actually

combines the results of
multiple enumerators.
(Everybody knows about derivation, but

composition is another powerful concept in
object-oriented programming.
We’ve seen it

before when building context menus.)

In a producer-driven enumerator, you would implement composition
by calling the two

enumeration functions one after the other.
In a consumer-driven enumerator, you would

implement composition
by wrapping the two enumerators inside a large enumerator
which

then chooses between the two based on which enumerator
was currently active.

A fiber-based enumerator behaves more like a consumer-driven
enumerator, again, with

easier state management.

Let’s write a composite enumerator that enumerates everything
in the root of your C: drive

(no subdirectories),
plus everything in the current directory (including subdirectories).

https://devblogs.microsoft.com/oldnewthing/20050104-00/?p=36813
https://devblogs.microsoft.com/oldnewthing/archive/2004/10/07/239197.aspx

2/3

class CompositeEnumerator : public FiberEnumerator {

public:

CompositeEnumerator()

 : m_eFiltered(TEXT("C:\\"))

 , m_eCd(TEXT(".")) { }

LPCTSTR GetCurDir()

 { return m_peCur->GetCurDir(); }

LPCTSTR GetCurPath()

 { return m_peCur->GetCurPath(); }

const WIN32_FIND_DATA* GetCurFindData()

 { return m_peCur->GetCurFindData(); }

private:

void FiberProc();

private:

FiberEnumerator* m_peCur;

FilteredEnumerator m_eFiltered;

DirectoryTreeEnumerator m_eCd;

};
void CompositeEnumerator::FiberProc()

{

FEFOUND fef;

m_peCur = &m_eFiltered;

while ((fef = m_peCur->Next()) != FEF_DONE &&

 fef != FEF_LEAVEDIR) {

 m_peCur->SetResult(Produce(fef));

}
m_peCur = &m_eCd;

while ((fef = m_peCur->Next()) != FEF_DONE) {

 m_peCur->SetResult(Produce(fef));

}
}

Sidebar:
Our composite enumeration is complicated by the
fact that our

FilteredEnumerator
spits out a FEF_LEAVEDIR at the
end, but which we want to

suppress, so we have to
check for it and eat it.

In the more common case where the enumerator is generating
a flat list, it would be a simple

matter of just forwarding
the two enumerators one after the other.
Something like this:

3/3

void CompositeEnumerator2::FiberProc()

{

Enum(&m_eFiltered);

Enum(&m_eCd);

}

void CompositeEnumerator2::Enum(FiberEnumerator *pe)

{

m_peCur = pe;

FEFOUND fef;

while ((fef = m_peCur->Next()) != FEF_DONE) {

 m_peCur->SetResult(Produce(fef));

}
}

End sidebar.

You can try out this CompositeEnumerator
with the program you’ve been playing with for

the past
few days. Just change the line in main
that creates the enumerator to the following:

CompositeEnumerator e;

Exercise: Gosh, why is the total so unusually large?

Exercise: How many fibers are there in the program?

Exercise: Draw a diagram showing how control flows
among the various fibers in this

program.

Before you get all excited about fibers, consider the following:

Converting a thread to a fiber needs to be coordinated among
all the components in the

process so that it is converted only
once and stays converted until everybody is finished.

This means that if you are writing a plug-in that will go into
some other process, you

probably should avoid fibers,
since you don’t know what the other components in the

process
are going to do with fibers.

Fibers do not completely solve the one-thread-per-connection problem.
They do reduce

the context switching, but the memory footprint
will still limit you to 2000 fibers per

process (assuming a
2GB user-mode address space) since each fiber has a stack,
which

defaults to 1MB.

I think that’s enough about fibers for now.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

