
1/3

January 3, 2005

Using fibers to simplify enumerators, part 4: Filtering
devblogs.microsoft.com/oldnewthing/20050103-00

Raymond Chen

One type of higher-order enumeration is filtering,
where one enumerator takes the output of

another
enumerator and removes some elements.

In a producer-driven enumerator, you would implement filtering
by substituting a new

callback function that responds to callbacks
on behalf of the client for items that should be

filtered,
and forwarding callbacks to the client for items that are not filtered.

In a consumer-driven enumerator, you would implement composition
by wrapping the

enumerator inside another enumerator
which drives the inner enumerator and forwards

items that it
wishes the caller to see.

A fiber-based enumerator behaves more like a consumer-driven
enumerator, but,with easier

state management.

Let’s write a filter enumerator that removes all directories
and suppresses recursing into

them.

https://devblogs.microsoft.com/oldnewthing/20050103-00/?p=36823

2/3

class FilteredEnumerator : public FiberEnumerator {

public:

FilteredEnumerator(LPCTSTR pszDir) : m_e(pszDir) { }

LPCTSTR GetCurDir()

 { return m_e.GetCurDir(); }

LPCTSTR GetCurPath()

 { return m_e.GetCurPath(); }

const WIN32_FIND_DATA* GetCurFindData()

 { return m_e.GetCurFindData(); }

private:

void FiberProc();

private:

DirectoryTreeEnumerator m_e;

};
void FilteredEnumerator::FiberProc()

{

FEFOUND fef;

while ((fef = m_e.Next()) != FEF_DONE) {

 FERESULT fer;

 if (fef == FEF_DIR) {

 fer = FER_SKIP; // don't recurse into directories

 } else {

 fer = Produce(fef);

 }

 m_e.SetResult(fer);

}
}

To produce items from this filtered enumerator,
we run the real enumerator (m_e)
and

remove all directories, preventing them from
being propagated to the filter’s consumer and

just responding “skip it” to the real enumerator.

You can test out this filtered enumerator with the
same TestWalk function we’ve been

using
for the past few days. The only change you’ll need
to make is to the main function:

int __cdecl main(int argc, char **argv)

{

ConvertThreadToFiber(NULL);

FilteredEnumerator e(TEXT("."));

TestWalk(&e);

ConvertFiberToThread();

return 0;

}

Observe that the program no longer recurses into
subdirectories. It just tallies the sizes of the

files in the current directory.

Next time, composition.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

Follow

