
1/10

December 31, 2004

Using fibers to simplify enumerators, part 3: Having it
both ways

devblogs.microsoft.com/oldnewthing/20041231-00

Raymond Chen

As we discovered in the previous two entries [second], the problem with enumeration is that

somebody always loses.

Now we will use fibers to fight back. Before you decide to use fibers in your programs, make

sure to read the dire warnings at the end of this article. My goal here is to show one use of

fibers, not to say that fibers are the answer to all your problems. Fibers can create more

problems than they solve. We’ll come back to all the dire warnings later.

As with most clever ideas, it has a simple kernel: Use a fiber to run both the caller and the

enumerator each on their own stack.

https://devblogs.microsoft.com/oldnewthing/20041231-00/?p=36833
https://devblogs.microsoft.com/oldnewthing/archive/2004/12/29/343664.aspx
https://devblogs.microsoft.com/oldnewthing/archive/2004/12/30/344281.aspx

2/10

#include <windows.h>

#include <shlwapi.h>

#include <stdio.h>

#include <strsafe.h>

enum FEFOUND {

FEF_FILE, // found a file

FEF_DIR, // found a directory

FEF_LEAVEDIR, // leaving a directory

FEF_DONE, // finished

};

enum FERESULT {

FER_CONTINUE, // continue enumerating

 // (if directory: recurse into it)

FER_SKIP, // skip directory (do not recurse)

};

class __declspec(novtable) FiberEnumerator {

public:

FiberEnumerator();

~FiberEnumerator();

FEFOUND Next();

void SetResult(FERESULT fer) { m_fer = fer; }

void Skip() { SetResult(FER_SKIP); }

virtual LPCTSTR GetCurDir() = 0;

virtual LPCTSTR GetCurPath() = 0;

virtual const WIN32_FIND_DATA* GetCurFindData() = 0;

protected:

virtual void FiberProc() = 0;

static void DECLSPEC_NORETURN WINAPI

 s_FiberProc(void* pvContext);

FERESULT Produce(FEFOUND fef);

protected:

void* m_hfibCaller;

void* m_hfibEnumerator;

FEFOUND m_fef;

FERESULT m_fer;

};

FiberEnumerator::FiberEnumerator()

: m_fer(FER_CONTINUE)

{

m_hfibEnumerator = CreateFiber(0, s_FiberProc, this);

}

3/10

FiberEnumerator::~FiberEnumerator()

{

DeleteFiber(m_hfibEnumerator);

}

void DECLSPEC_NORETURN FiberEnumerator::

 s_FiberProc(void *pvContext)

{

FiberEnumerator* self =

 reinterpret_cast<FiberEnumerator*>(pvContext);

self->FiberProc();

// Theoretically, we need only produce Done once,

// but keep looping in case a consumer gets

// confused and asks for the Next() item even

// though we're Done.

for (;;) self->Produce(FEF_DONE);

}

This helper class does the basic bookkeeping of fiber-based enumeration. At construction, it

remembers the fiber that is consuming the enumeration, as well as creating a fiber that will

produce the enumeration. At destruction, it cleans up the fiber. The derived class is expected

to implement the FiberProc method and call Produce() every so often.

The real magic happens in the (somewhat anticlimactic) Produce() and Next() methods:

FERESULT FiberEnumerator::Produce(FEFOUND fef)

{

m_fef = fef; // for Next() to retrieve

m_fer = FER_CONTINUE; // default

SwitchToFiber(m_hfibCaller);

return m_fer;

}

FEFOUND FiberEnumerator::Next()

{

m_hfibCaller = GetCurrentFiber();

SwitchToFiber(m_hfibEnumerator);

return m_fef;

}

To Produce() something, we remember the production code, pre-set the enumeration

result to its default of FER_CONTINUE , and switch to the consumer fiber. When the

consumer fiber comes back with an answer, we return it from Produce() .

To get the next item, we remember the identity of the calling fiber, then switch to the

enumerator fiber. This runs the enumerator until it decides to Produce() something, at

which point we take the production code and return it.

4/10

That’s all there is to it. The m_fef and m_fer members are for passing the parameters and

results back and forth across the fiber boundary.

Okay, with that groundwork out of the way, writing the producer itself is rather anticlimactic.

Since we want to make things easy for the consumer, we use the interface the consumer

would have designed, with some assistance from the helper class.

https://devblogs.microsoft.com/oldnewthing/archive/2004/12/30/344281.aspx

5/10

class DirectoryTreeEnumerator : public FiberEnumerator {

public:

DirectoryTreeEnumerator(LPCTSTR pszDir);

~DirectoryTreeEnumerator();

LPCTSTR GetCurDir() { return m_pseCur->m_szDir; }

LPCTSTR GetCurPath() { return m_szPath; }

const WIN32_FIND_DATA* GetCurFindData()

 { return &m_pseCur->m_wfd; }

private:

void FiberProc();

void Enum();

struct StackEntry {

 StackEntry* m_pseNext;

 HANDLE m_hfind;

 WIN32_FIND_DATA m_wfd;

 TCHAR m_szDir[MAX_PATH];

};

bool Push(StackEntry* pse);

void Pop();

private:

StackEntry *m_pseCur;

TCHAR m_szPath[MAX_PATH];

};

DirectoryTreeEnumerator::

DirectoryTreeEnumerator(LPCTSTR pszDir)

: m_pseCur(NULL)

{

StringCchCopy(m_szPath, MAX_PATH, pszDir);

}

DirectoryTreeEnumerator::~DirectoryTreeEnumerator()

{

while (m_pseCur) {

 Pop();

}
}

bool DirectoryTreeEnumerator::

 Push(StackEntry* pse)

{

pse->m_pseNext = m_pseCur;

m_pseCur = pse;

return

 SUCCEEDED(StringCchCopy(pse->m_szDir,

 MAX_PATH, m_szPath)) &&

 PathCombine(m_szPath, pse->m_szDir, TEXT("*.*")) &&

 (pse->m_hfind = FindFirstFile(m_szPath,

6/10

 &pse->m_wfd)) != INVALID_HANDLE_VALUE;

}

void DirectoryTreeEnumerator::Pop()

{

StackEntry* pse = m_pseCur;

if (pse->m_hfind != INVALID_HANDLE_VALUE) {

 FindClose(pse->m_hfind);

}
m_pseCur = pse->m_pseNext;

}

void DirectoryTreeEnumerator::FiberProc()

{

Enum();

}

void DirectoryTreeEnumerator::Enum()

{

StackEntry se;

if (Push(&se)) {

 do {

 if (lstrcmp(se.m_wfd.cFileName, TEXT(".")) != 0 &&

 lstrcmp(se.m_wfd.cFileName, TEXT("..")) != 0 &&

 PathCombine(m_szPath, se.m_szDir, se.m_wfd.cFileName)) {

 FEFOUND fef = (se.m_wfd.dwFileAttributes &

 FILE_ATTRIBUTE_DIRECTORY) ?

 FEF_DIR : FEF_FILE;

 if (Produce(fef) == FER_CONTINUE && fef == FEF_DIR) {

 Enum(); // recurse into the subdirectory we just produced

 }

 }

 } while (FindNextFile(se.m_hfind, &se.m_wfd));

}
Produce(FEF_LEAVEDIR);

Pop();

}

As you can see, this class is a mix of the two previous classes. Like the consumer-based class,

information about the item being enumerated is obtained by calling methods on the

enumerator object. But like the callback-based version, the loop that generates the objects

themselves is a very simple recursive function, with a call to Produce in place of a callback.

In fact, it’s even simpler than the callback-based version, since we don’t have to worry about

the FER_STOP code. If the consumer wants to stop enumeration, the consumer simply stops

calling Next() .

Most of the complexity in the class is just bookkeeping to permit abandoning the

enumeration prematurely.

7/10

Okay, let’s take this fiber out for a spin. You can use the same TestWalk function as last

time, but for added generality, change the first parameter from

DirectoryTreeEnumerator* to FiberEnumerator* . (The significance of this will become

apparent next time.)

A little tweak needs to be made to the main function, though.

int __cdecl main(int argc, char **argv)

{

ConvertThreadToFiber(NULL);

DirectoryTreeEnumerator e(TEXT("."));

TestWalk(&e);

ConvertFiberToThread();

return 0;

}

Since the enumerator is going to switch between fibers, we’d better convert the thread to a

fiber so it’ll have something to switch back to!

Here’s a schematic of what happens when you run this fiber-based enumerator:

ConvertThreadToFiber

Main fiber

construct DirectoryTreeEnumerator Enumerator fiber

CreateFiber (not running)

initialize variables

Next(CONTINUE)

SwitchToFiber() → starts running

 FindFirstFile etc

 Produce(FILE)

Next(CONTINUE) “returns” FILE ← SwitchToFiber()

use the result

Next(CONTINUE)

SwitchToFiber() → Produce(FILE) “returns” CONTINUE

 FindNextFile etc

 Produce(DIR)

8/10

Next(CONTINUE) “returns” DIR ← SwitchToFiber()

use the result

Next(CONTINUE)

SwitchToFiber() → Produce(DIR) “returns” CONTINUE

and so on… until…

 Produce(DONE)

Next(CONTINUE) “returns” DONE ← SwitchToFiber()

cleanup

DeleteFiber

destruct DirectoryTreeEnumerator

ConvertFiberToThread

Observe that from each fiber’s point of view, the other fiber is just a subroutine!

Coding subtlety: Why do we capture the caller’s fiber each time the Next() method is

called? Why not capture it when the FiberEnumerator is constructed?

Next time, we’ll see how this fiber-based enumerator easily admits higher-order operations

such as filtering and composition.

Dire warnings about fibers

Fibers are like dynamite. Mishandle them and your process explodes.

The first dire warning is that fibers are expensive in terms of address space, since each one

gets its own stack (typically a megabyte).

And since each fiber has its own stack, it also has its own exception chain. This means that if

a fiber throws an exception, only that fiber can catch it. (Same as threads.) That’s a strong

argument against using an STL std::stack object to maintain our state: STL is based on an

exception-throwing model, but you can’t catch exceptions raised by another fiber. (You also

can’t throw exceptions past a COM boundary, which severely limits how much you can use

STL in a COM object.)

One of the big problems with fibers is that everybody has to be in cahoots. You need to decide

on one person who will call the ConvertThreadToFiber function since fiber/thread

conversion is not reference-counted. If two people call ConvertThreadToFiber on the same

http://msdn.microsoft.com/library/en-us/dllproc/base/convertthreadtofiber.asp

9/10

thread, the first will convert it, and so will the second! This results in two fibers for the same

thread, and things can only get worse from there.

You might think, “Well, wouldn’t the GetCurrentFiber function return NULL if the thread

hasn’t been converted to a fiber?” Try it: It returns garbage. (It’s amazing how many people

ask questions without taking even the slightest steps towards figuring out the answer

themselves. Try writing a test program.)

But even if GetCurrentFiber told you whether or not the thread had been converted to a fiber,

that still won’t help. Suppose two people want to do fibrous activity on the thread. The first

converts, the second notices that the thread is already a fiber (somehow) and skips the

conversion. Now the first operation completes and calls the ConvertFiberToThread

function. Oh great, now the second operation is stranded doing fibrous activity without a

fiber!

Therefore, you can use fibers safely only if you control the thread and can get all your code to

agree on who controls the fiber/thread conversion.

An important consequence of the “in cahoots” rule is that you have to make sure all the code

you use on a fiber is “fiber-safe” – a level of safety even beyond thread-safety. The C runtime

library keeps information in per-thread state: There’s errno, all sorts of bonus bookkeeping

when you create a thread, or call various functions that maintain state in per-thread data

(such as strerror, _fcvt, and strtok).

In particular, C++ exception handling is managed by the runtime, and the runtime

tracks this data in per-thread state (rather than per-fiber state). Therefore, if you throw a

C++ exception from a fiber, strange things happen.

(Note: Things may have changed in the C runtime lately; I’m operating from information

that’s a few years old.)

Even if you carefully avoid the C runtime library, you still have to worry about any other

libraries you use that use per-thread data. None of them will work with fibers. If you see a call

to the TlsAlloc function, then there’s a good chance that the library is not fiber-safe. (The

fiber-safe version is the FlsAlloc function.)

Another category of things that are not fiber-safe are windows. Windows have thread affinity,

not fiber affinity.

Raymond Chen

Follow

http://msdn.microsoft.com/library/en-us/dllproc/base/getcurrentfiber.asp
https://devblogs.microsoft.com/oldnewthing/archive/2004/07/27/198410.aspx#198429
https://devblogs.microsoft.com/oldnewthing/archive/2004/07/20/188696.aspx#188816
http://msdn.microsoft.com/library/en-us/dllproc/base/convertfibertothread.asp
http://msdn.microsoft.com/library/en-us/vccore98/html/_crt__doserrno.2c_.errno.2c_._sys_errlist.2c_.and__sys_nerr.asp
http://msdn.microsoft.com/library/en-us/vclib/html/_crt__beginthread.2c_._beginthreadex.asp
http://msdn.microsoft.com/library/en-us/vccore98/html/_crt_strerror.2c_._strerror.asp
http://msdn.microsoft.com/library/en-us/vccore98/html/_crt__fcvt.asp
http://msdn.microsoft.com/library/en-us/vccore98/html/_crt_strtok.2c_.wcstok.2c_._mbstok.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/tlsalloc.asp
http://msdn.microsoft.com/library/en-us/dllproc/base/flsalloc.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

10/10

