
1/7

December 29, 2004

Using fibers to simplify enumerators, part 1: When life is
easier for the enumerator

devblogs.microsoft.com/oldnewthing/20041229-00

Raymond Chen

The COM model for enumeration (enumeration objects)
is biased towards making
life easy

for the consumer and hard for the producer.
The enumeration object (producer)
needs to be

structured as a state machine,
which can be quite onerous for complicated enumerators,
for

example, tree walking or composite enumeration.

On the other hand, the callback model for producer
(used by most Win32 functions) is
biased

towards making life easy for the enumerator and hard
for the consumer.
This time, it is the

consumer that needs to be structured as
a state machine, which is more work if the consumer

is doing
something complicated with each callback.
(And even if not, you have to create a

context structure
to pass state from the caller, through the enumerator,
to the callback.)

For example, suppose we want to write a routine that
walks a directory structure, allowing

the caller to
specify what to do at each decision point.
Let’s design this first using the callback

paradigm:

https://devblogs.microsoft.com/oldnewthing/20041229-00/?p=36853

2/7

#include <windows.h>

#include <shlwapi.h>

#include <stdio.h>

enum FERESULT {

FER_CONTINUE, // continue enumerating

 // (if directory: recurse into it)

FER_SKIP, // skip this file/directory

FER_STOP, // stop enumerating

};

enum FEOPERATION {

FEO_FILE, // found a file

FEO_DIR, // found a directory

FEO_LEAVEDIR, // leaving a directory

};

typedef FERESULT (CALLBACK *FILEENUMCALLBACK)

 (FEOPERATION feo,

 LPCTSTR pszDir, LPCTSTR pszPath,

 const WIN32_FIND_DATA* pwfd,

 void *pvContext);

FERESULT EnumDirectoryTree(LPCTSTR pszDir,

 FILEENUMCALLBACK pfnCB, void* pvContext);

The design here is that the caller calls
 EnumDirectoryTree and provides a callback

function
that is informed of each file found and can decide
how the enumeration should

proceed.

Designing this as a callback makes life much simpler
for the implementation of

EnumDirectoryTree .

3/7

FERESULT EnumDirectoryTree(

 LPCTSTR pszDir,

 FILEENUMCALLBACK pfnCB, void *pvContext)

{

FERESULT fer = FER_CONTINUE;

TCHAR szPath[MAX_PATH];

if (PathCombine(szPath, pszDir, TEXT(“*.*”))) {

 WIN32_FIND_DATA wfd;

 HANDLE hfind = FindFirstFile(szPath, &wfd);

 if (hfind != INVALID_HANDLE_VALUE) {

 do {

 if (lstrcmp(wfd.cFileName, TEXT(“.”)) != 0 &&

 lstrcmp(wfd.cFileName, TEXT(“..”)) != 0 &&

 PathCombine(szPath, pszDir, wfd.cFileName)) {

 FEOPERATION feo = (wfd.dwFileAttributes &

 FILE_ATTRIBUTE_DIRECTORY) ?

 FEO_DIR : FEO_FILE;

 fer = pfnCB(feo, pszDir, szPath, &wfd, pvContext);

 if (fer == FER_CONTINUE) {

 if (feo == FEO_DIR) {

 fer = EnumDirectoryTree(szPath, pfnCB, pvContext);

 if (fer == FER_CONTINUE) {

 fer = pfnCB(FEO_LEAVEDIR, pszDir, szPath,

 &wfd, pvContext);

 }

 }

 } else if (fer == FER_SKIP) {

 fer = FER_CONTINUE;

 }

 }

 } while (FindNextFile(hfind, &wfd));

 FindClose(hfind);

 }

}
return fer;

}

Note: I made no attempt to make this function at all efficient
since that’s not my point here.

It’s highly wasteful of stack space (which can cause problems
when walking deep directory

trees).
This function also doesn’t like paths deeper than MAX_PATH ;
fixing this is beyond the

scope of this series.
Nor do I worry about
reparse points, which can induce infinite loops if

you’re not
careful.

Well, that wasn’t so hard to write. But that’s because we made
life hard for the consumer. The

consumer needs to maintain state
across each callback. For example, suppose you wanted to

build
a list of directories and their sizes (both including and
excluding subdirectories).

https://devblogs.microsoft.com/oldnewthing/archive/2004/12/27/332704.aspx

4/7

class EnumState {

public:

EnumState()

 : m_pdirCur(new Directory(NULL)) { }

~EnumState() { Dispose(); }

FERESULT Callback(FEOPERATION feo,

 LPCTSTR pszDir, LPCTSTR pszPath,

 const WIN32_FIND_DATA* pwfd);

void FinishDir(LPCTSTR pszDir);

private:

struct Directory {

 Directory(Directory* pdirParent)

 : m_pdirParent(pdirParent)

 , m_ullSizeSelf(0)

 , m_ullSizeAll(0) { }

 Directory* m_pdirParent;

 ULONGLONG m_ullSizeSelf;

 ULONGLONG m_ullSizeAll;

};

Directory* Push();

void Pop();

void Dispose();

Directory* m_pdirCur;

};

EnumState::Directory* EnumState::Push()

{

Directory* pdir = new Directory(m_pdirCur);

if (pdir) {

 m_pdirCur = pdir;

}
return pdir;

}

void EnumState::Pop()

{

Directory* pdir = m_pdirCur->m_pdirParent;

delete m_pdirCur;

m_pdirCur = pdir;

}

void EnumState::Dispose()

{

while (m_pdirCur) {

5/7

 Pop();

}
}

void EnumState::FinishDir(LPCTSTR pszDir)

{

 m_pdirCur->m_ullSizeAll +=

 m_pdirCur->m_ullSizeSelf;

 printf(“Size of %s is %I64d (%I64d)\n”,

 pszDir, m_pdirCur->m_ullSizeSelf,

 m_pdirCur->m_ullSizeAll);

}

ULONGLONG FileSize(const WIN32_FIND_DATA *pwfd)

{

 return

 ((ULONGLONG)pwfd->nFileSizeHigh << 32) +

 pwfd->nFileSizeLow;

}

FERESULT EnumState::Callback(FEOPERATION feo,

 LPCTSTR pszDir, LPCTSTR pszPath,

 const WIN32_FIND_DATA* pwfd)

{

if (!m_pdirCur) return FER_STOP;

switch (feo) {

case FEO_FILE:

 m_pdirCur->m_ullSizeSelf += FileSize(pwfd);

 return FER_CONTINUE;

case FEO_DIR:

 if (Push()) {

 return FER_CONTINUE;

 } else {

 return FER_SKIP;

 }

case FEO_LEAVEDIR:

 FinishDir(pszPath);

/* Propagate size into parent */

 m_pdirCur->m_pdirParent->m_ullSizeAll +=

 m_pdirCur->m_ullSizeAll;

 Pop();

 return FER_CONTINUE;

6/7

default:

 return FER_CONTINUE;

}
/* notreached */

}

FERESULT CALLBACK EnumState_Callback(

 FEOPERATION feo,

 LPCTSTR pszDir, LPCTSTR pszPath,

 const WIN32_FIND_DATA* pwfd,

 void* pvContext)

{

EnumState* pstate =

 reinterpret_cast<EnumState*>(pvContext);

return pstate->Callback(feo, pszDir,

 pszPath, pwfd);

}

int __cdecl main(int argc, char **argv)

{

EnumState state;

if (EnumDirectoryTree(TEXT(“.”),

 EnumState_Callback,

 &state) == FER_CONTINUE) {

 state.FinishDir(TEXT(“.”));

}
return 0;

}

Boy that sure was an awful lot of typing, and what’s
worse, the whole structure of the

program has
been obscured by the explicit state management.
It sure is hard to tell at a

glance what this
chunk of code is trying to do.
Instead, you have to stare at the EnumState

class
and reverse-engineer what’s going on.

(Yes, I could have simplified this code a little by
using a built-in stack class, but as I have

already noted
in the context of smart pointers,
I try to present these articles in
“pure” C++ so

people won’t get into arguments about which
class library is best.)

Tomorrow, we’ll look at how the world would be
if the function EnumDirectoryTree were

spec’d out
by the caller rather than the enumerator!

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

7/7

