
1/4

December 16, 2004

Optimization is often counter-intuitive
devblogs.microsoft.com/oldnewthing/20041216-00

Raymond Chen

Anybody who’s done intensive optimization knows that optimization is often counter-

intuitive. Things you think would be faster often aren’t.

Consider, for example, the exercise of obtaining the current instruction pointer. There’s the

naïve solution:

__declspec(noinline)

void *GetCurrentAddress()

{

 return _ReturnAddress();

}


...

void *currentInstruction = GetCurrentAddress();


If you look at the disassembly, you’ll get something like this:

GetCurrentAddress:

   mov eax, [esp]

   ret


...

   call GetCurrentAddress

   mov [currentInstruction], eax


“Pah,” you say to yourself, “look at how inefficient that is. I can reduce that to two

instructions. Watch:

void *currentInstruction;

__asm {

call L1

L1: pop currentInstruction

}


That’s half the instruction count of your bloated girly-code.”

https://devblogs.microsoft.com/oldnewthing/20041216-00/?p=36973
http://snltranscripts.jt.org/88/88ghansfranz.phtml


2/4

But if you sit down and race the two code sequences, you’ll find that the function-call version

is faster by a factor of two! How can that be?

The reason is the “hidden variables” inside the processor. All modern processors contain

much more state than you can see from the instruction sequence. There are TLBs, L1 and L2

caches, all sorts of stuff that you can’t see. The hidden variable that is important here is the

return address predictor.

The more recent Pentium (and I believe also Athlon) processors maintain an internal stack

that is updated by each CALL  and RET  instruction. When a CALL  is executed, the return

address is pushed both onto the real stack (the one that the ESP  register points to) as well as

to the internal return address predictor stack; a RET  instruction pops the top address of the

return address predictor stack as well as the real stack.

The return address predictor stack is used when the processor decodes a RET  instruction. It

looks at the top of the return address predictor stack and says, “I bet that RET  instruction is

going to return to that address.” It then speculatively executes the instructions at that

address. Since programs rarely fiddle with return addresses on the stack, these predictions

tend to be highly accurate.

That’s why the “optimization” turns out to be slower. Let’s say that at the point of the CALL

L1  instruction, the return address predictor stack looks like this:

Return address

predictor stack:

  caller1 → caller2 → caller3 → ⋯

Actual stack:   caller1 → caller2 → caller3 → ⋯

Here, caller1  is the function’s caller, caller1  is the function’s caller’s caller, and so on.

So far, the return address predictor stack is right on target. (I’ve drawn the actual stack below

the return address predictor stack so you can see that they match.)

Now you execute the CALL  instruction. The return address predictor stack and the actual

stack now look like this:

Return address

predictor stack:

  L1 → caller1 → caller2 → caller3 → ⋯

Actual stack:   L1 → caller1 → caller2 → caller3 → ⋯

But instead of executing a RET  instruction, you pop off the return address. This removes it

from the actual stack, but doesn’t remove it from the return address predictor stack.



3/4

Return address

predictor stack:

  L1 → caller1 → caller2 → caller3 → ⋯

Actual stack:   caller1 → caller2 → caller3 → caller4 → ⋯

I think you can see where this is going.

Eventually your function returns. The processor decodes your RET  instruction and looks at

the return address predictor stack and says, “My predictor stack says that this RET  is going

to return to L1 . I will begin speculatively executing there.”

But oh no, the value on the top of the real stack isn’t L1  at all. It’s caller1 . The

processor’s return address predictor predicted incorrectly, and it ended up wasting its time

studying the wrong code!

The effects of this bad guess don’t end there. After the RET  instruction, the return address

predictor stack looks like this:

Return address

predictor stack:

  caller1 → caller2 → caller3 → ⋯

Actual stack:   caller2 → caller3 → caller4 → ⋯

Eventually your caller returns. Again, the processor consults its return address predictor

stack and speculatively executes at caller1 . But that’s not where you’re returning to.

You’re really returning to caller2 .

And so on. By mismatching the CALL  and RET  instructions, you managed to cause every

single return address prediction on the stack to be wrong. Notice in the diagram that, in the

absence of somebody playing games with the return address predictor stack of the type that

created the problem initially, not a single prediction on the return address predictor

stack will be correct. None of the predicted return addresses match up with actual return

addresses.

Your peephole optimization has proven to be shortsighted.

Some processors expose this predictor more explicitly. The Alpha AXP, for example, has

several types of control flow instructions, all of which have the same logical effect, but which

hint to the processor how it should maintain its internal predictor stack. For example, the

BR  instruction says, “Jump to this address, but do not push the old address onto the

predictor stack.” On the other hand, the JSR  instruction says, “Jump to this address, and

push the old address onto the predictor stack.” There is also a RET  instruction that says,

“Jump to this address, and pop an address from the predictor stack.” (There’s also a fourth

type that isn’t used much.)



4/4

Moral of the story: Just because something looks better doesn’t mean that it necessarily is

better.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

