
1/3

December 7, 2004

Dragging a shell object, part 2: Enabling the Move
operation

devblogs.microsoft.com/oldnewthing/20041207-00

Raymond Chen

Let’s say that we did want to support Move in our
drag/drop program, for whatever reason.

Let’s do it with some scratch file instead
of clock.avi , though. Create a file somewhere

that you don’t mind losing; let’s say it’s C:\throwaway.txt .
Change the function

OnLButtonDown as follows:

void OnLButtonDown(HWND hwnd, BOOL fDoubleClick,

 int x, int y, UINT keyFlags)

{

 IDataObject *pdto;

 if (SUCCEEDED(GetUIObjectOfFile(hwnd,

 L”C:\\throwaway.txt”,

 IID_IDataObject, (void**)&pdto))) {

 IDropSource *pds = new CDropSource();

 if (pds) {

 DWORD dwEffect;

 if (DoDragDrop(pdto, pds,

 DROPEFFECT_COPY | DROPEFFECT_LINK | DROPEFFECT_MOVE,

 &dwEffect) == DRAGDROP_S_DROP) {

 if (dwEffect & DROPEFFECT_MOVE) {

 DeleteFile(TEXT(“C:\\throwaway.txt”));

 }

 }

 pds->Release();

 }

 pdto->Release();

 }

}

Oh wait, there are people out there who think I’m advocating hard-coded
paths, so let me

change the program to operate on a path passed on the
command line.
This is code that is

purely a distraction from the point of this
article, which is why I avoided it originally.

Personally I dislike it when somebody hands me a sample program
that is 90% unrelated to

the technology the program is trying to demonstrate.
I have to go
digging through the code

hunting for the 10% of stuff that matters.

https://devblogs.microsoft.com/oldnewthing/20041207-00/?p=37123

2/3

#include <shellapi.h>

LPWSTR *g_argv;

LPCWSTR g_pszTarget;

void OnLButtonDown(HWND hwnd, BOOL fDoubleClick,

 int x, int y, UINT keyFlags)

{

 IDataObject *pdto;

 if (SUCCEEDED(GetUIObjectOfFile(hwnd,

 g_pszTarget,

 IID_IDataObject, (void**)&pdto))) {

 …

 DeleteFileW(g_pszTarget);

 …

}

BOOL

InitApp(void)

{

 int argc;

 g_argv = CommandLineToArgvW(GetCommandLineW(), &argc);

 if (!g_argv || argc != 2) return FALSE;

 g_pszTarget = g_argv[1];

 if (PathIsRelative(g_pszTarget)) return FALSE;

 …

}

Woo-hoo, eight distracting lines of code that have nothing to do
with the subject of dragging

shell objects around. I hope you’re
happy.

Where was I? Oh right, explaining the first batch of blue code
that by now has scrolled off

your screen thanks to the intervening
meaningless drivel.

Now that we allow move, we need to check whether the resulting effect
was

DROPEFFECT_MOVE , which tells us,
“The drop target wanted to perform a move operation,

but it only
got as far as copying the object; please finish the move operation
by deleting the

original.”

Notice that DROPEFFECT_MOVE does not
mean, “The drop target performed a move.”

Rather, it tells you that the drop target wants you to delete
the original.
If the drop target was

able to delete the original (or move it
directly), then you will not get
 DROPEFFECT_MOVE

back.

3/3

(One case where DROPEFFECT_MOVE doesn’t even mean
that a Move operation occurred at

all is if the user dragged
the object to an “Incinerator” icon, the purpose of which is
to destroy

whatever is dropped onto it. In this case the
Incinerator would return DROPEFFECT_MOVE

without
even making a copy. Result: The object is deleted.
A better name for

DROPEFFECT_MOVE would have been
 DROPEFFECT_DELETEORIGINAL .)

If the data object represents a file, then the shell is pretty
good at figuring out how to move

the file to the destination
instead of copying it and asking you to delete the original.
You will

typically get DROPEFFECT_MOVE back only
if the data object represents a non-file, since in

that case
the shell doesn’t know how to delete the original.

But what if you want to know whether the operation was a move,
regardless of whether the

operation was optimized by the drop
target?
We’ll look at that next time.

(By the way, if you execute a Move of the throwaway file,
don’t forget to move it back so you

can run the scratch
program again!)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

