
1/2

November 15, 2004

Asking questions where the answer is unreliable anyway
devblogs.microsoft.com/oldnewthing/20041115-00

Raymond Chen

Here are some questions and then explanations why you can’t do anything meaningful with

the answer anyway even if you could get an answer in the first place.

“How can I find out how many outstanding references there are to a shared

memory object?”

Even if there were a way to find out, the answer you get would be instantly wrong anyway

because the microsecond after you ask the question, somebody can open a new handle. This

is an example of “Meaningless due to unavoidable race condition.”

“How can I find out whether a critical section is free without entering it?”

Again, once you get an answer, the answer could instantly become wrong if another thread

decides to enter the critical section immediately after you checked that it was free.

“How can I tell whether there is a keyboard hook installed in the system?”

This suffers from the same problem yet again: The instant you get the answer (“all clear”),

somebody can install a hook.

This is actually even worse because people who ask this question are typically interested in

secure keyboard access. But if somebody has a keyboard hook installed, that means that they

have already injected code into your process (namely, the hook itself). At which point they

could easily patch the imaginary IsKeyboardHooked() function to always return FALSE .

Now when your program asks if the keyboard is hooked, the answer is a happy “no” and you

proceed, blithely confident that there are no hooks. Just because somebody said so.

You cannot reliably reason about the security of a system from within the

system itself.

It’s like trying to prove to yourself that you aren’t insane.

The system may itself have already been compromised and all your reasoning therefore can

be virtualized away. Besides, your program could be running inside a virtual PC

environment, in which case the absence of a keyboard hook inside the virtual PC proves

nothing. The keyboard logging could be happening in the virtual PC host software.

https://devblogs.microsoft.com/oldnewthing/20041115-00/?p=37313

2/2

From a UI standpoint, the desktop is the security boundary. Once you let somebody run on

your desktop, you implicitly trust them. Because now they can send your program random

messages, inject hooks, hack at your window handles, edit your menus, and generally party

all over you.

That’s why it is such a horrible mistake to let a service interact with the desktop. By joining

the interactive desktop, you have granted trust to a security context you should not be

trusting. Sure, it lets you manipulate objects on that desktop, but it also lets the objects on

that desktop manipulate you. (There’s a Yakov Smirnoff joke in there somewhere, but instead

I will quote Nietzsche: Wenn du lange in einen Abgrund blickst, blickt der Abgrund auch in

dich hinein.)

If you’re a service, you don’t want to start letting untrusted programs manipulate you. That

opens you up to a Shatter attack.

Raymond Chen

Follow

http://c2.com/cgi/wiki?InSovietRussia
http://www.microsoft.com/technet/security/news/htshat.mspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

