
1/3

November 9, 2004

A history of GlobalLock, part 4: A peek at the
implementation

devblogs.microsoft.com/oldnewthing/20041109-00

Raymond Chen

On one of our internal discussion mailing lists, someone posted
the following question:

We have some code that was using DragQueryFile to extract file paths.
The prototype for
DragQueryFile appears as follows:

UINT DragQueryFile(

 HDROP hDrop,

 UINT iFile,

 LPTSTR lpszFile,

 UINT cch

);

In the code we have, instead of passing an HDROP as the first parameter,
we were passing in a
pointer to a DROPFILES structure. This code was
working fine for the last few months until
some protocol changes
we made in packet layouts over the weekend.

I know that the bug is that we should be passing an HDROP handle
instead of a pointer, but I
am just curious as to why this worked
so flawlessly until now. In other words, what determines
the
validity of a handle and how come a pointer can sometimes
be used instead of a handle?

GlobalLock accepts HGLOBALs that refer to either GMEM_MOVEABLE or GMEM_FIXED

memory. The rule for Win32 is that for fixed memory,
the HGLOBAL is itself a pointer to the

memory,
whereas for moveable memory, the HGLOBAL is a handle that
needs to be

converted to a pointer.

GlobalAlloc works closely with GlobalLock so that GlobalLock can be fast.
If the memory

happens to be aligned just right and pass some other
tests, GlobalLock says “Woo-hoo, this is

a handle to a GMEM_FIXED
block of memory, so I should just return the pointer back.”

The packet layout changes probably altered the alignment,
which in turn caused GlobalLock

no longer to recognize (mistakenly) the
invalid parameter as a GMEM_FIXED handle. It

then went down
other parts of the validation path and realized that the handle
wasn’t valid at

all.

https://devblogs.microsoft.com/oldnewthing/20041109-00/?p=37353

2/3

This is not, of course, granting permission to pass
bogus pointers to GlobalLock; I’m just

explaining why
the problem kicked up all of a sudden even though
it has always been there.

With that lead-in, what’s the real story behind GMEM_MOVEABLE
in Win32?

GMEM_MOVEABLE memory allocates a “handle”. This handle can be
converted to memory

via GlobalLock. You can call GlobalReAlloc()
on an unlocked GMEM_MOVEABLE block (or

a locked GMEM_MOVEABLE
block when you pass the GMEM_MOVEABLE flag to

GlobalReAlloc
which means “move it even if it’s locked”) and the memory
will move,
but

the handle will continue to refer to it. You
have to re-lock the handle to get the new address it

got moved to.

GMEM_MOVEABLE is largely unnecessary; it provides additional
functionality that most

people have no use for. Most people
don’t mind when Realloc hands back a different value

from the
original. GMEM_MOVEABLE is primarily for the case where you
hand out a

memory handle, and then you decide to realloc it
behind the handle’s back. If you use

GMEM_MOVEABLE, the
handle remains valid even though the memory it refers to has

moved.

This may sound like a neat feature, but in practice it’s much
more trouble than it’s worth. If

you decide to use moveable memory,
you have to lock it before accessing it, then unlock it

when done.
All this lock/unlock overhead becomes a real pain, since you can’t
use pointers

any more. You have to use handles and convert them
to pointers right before you use them.

(This also means no pointers into the middle of a moveable object.)

Consequently, moveable memory is useless in practice.

Note, however, that GMEM_MOVEABLE still lingers on in various
places for compatibility

reasons. For example, clipboard data
must be allocated as moveable.
If you break this rule,

some programs will crash
because they made undocumented assumptions about how the

heap manager internally manages handles to moveable memory blocks
instead of calling

GlobalLock to convert the handle to a pointer.

A very common error is forgetting to lock global handles before
using them.
If you forget and

instead just cast a moveable memory handle to
a pointer, you will get strange results (and

will likely corrupt the heap).
Specifically, global handles passed via
the hGlobal member of

the STGMEDIUM structure,
returned via
the GetClipboardData function,
as well as lesser-

known places like
the hDevMode and hDevNames members of
the PRINTDLG structure are

all potentially moveable.
What’s scary is that if you make this mistake, you might actually get

away
with it for a long time (if the memory you’re looking at happened to
be allocated as

GMEM_FIXED), and then suddenly one day it crashes because
all of a sudden somebody

gave you memory that was allocated as
GMEM_MOVEABLE.

http://msdn.microsoft.com/library/en-us/com/htm/ost_a2z_9dt9.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/dataexchange/clipboard/clipboardreference/clipboardfunctions/getclipboarddata.asp
http://msdn.microsoft.com/library/en-us/winui/WinUI/WindowsUserInterface/UserInput/CommonDialogBoxLibrary/CommonDialogBoxReference/CommonDialogBoxStructures/PRINTDLG.asp

3/3

Okay, that’s enough about the legacy of the 16-bit memory manager for now.
My head is

starting to hurt…

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

