
1/2

November 3, 2004

Why do I sometimes see redundant casts before casting
to LPARAM?

devblogs.microsoft.com/oldnewthing/20041103-00

Raymond Chen

If you read through old code, you will often find casts
that seem redundant.

SendMessage(hwndListBox, LB_ADDSTRING, 0, (LPARAM)(LPSTR)”string”);

Why was “string” cast to LPSTR ?
It’s already an LPSTR !

These are leftovers from 16-bit Windows.
Recall that in 16-bit Windows, pointers were near

by default.
Consequently, “string” was a near pointer to a string.
If the code had been

written as

SendMessage(hwndListBox, LB_ADDSTRING, 0, (LPARAM)”string”);

then it would have taken the near pointer and cast it to a long .
Since a near pointer is a 16-

bit value, the pointer would have been zero-extended to the 32-bit size of a long .

However, all pointers in window messages must be far pointers
because the window

procedure for the window might very well be implemented
in a different module from the

sender.
Recall that near pointers are interpreted relative to the default
selector, and the

default selector for each module is different.
Sending a near pointer to another module will

result in the
pointer being interpreted relative to the recipient’s
default selector, which is

not the same as the sender’s
default selector.

The intermediate cast to LPSTR converts the near
pointer to a far pointer, LP being the

Hungarian
prefix for far pointers (also known as “long pointers”).
Casting a near pointer to a

far pointer inserts the previously-implied
default selector, so that the cast to LPARAM

captures
the full 16:16 far pointer.

Aren’t you glad you don’t have to worry about this any more?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20041103-00/?p=37403
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

