
1/3

October 15, 2004

Logical consequences of the way Windows converts
single-clicks into double-clicks

devblogs.microsoft.com/oldnewthing/20041015-00

Raymond Chen

First, I’m going to refer you to
the MSDN documentation on mouse clicks,
since that’s the

starting point.
I’m going to assume that you know the mechanics of how
single-clicks are

converted to double-clicks.

Okay, now that you’ve read it, let’s talk about some logical
consequences of that article and

what it means for the way
you design your user interface.

First, some people design their double-click action to be
something unrelated to the single-

click action.
They want to know if they can suppress the initial
WM_LBUTTONDOWN of the

double-click sequence.

Of course, you realize that that would require clairevoyance.
When the mouse button goes

down for the first time, the
window manager doesn’t know whether another click will come

or not. (Heck, often the user doesn’t know either!)
So it spits out a WM_LBUTTONDOWN

and waits for more.

Now suppose you’re a program that nevertheless wants to
continue with the dubious design

of having the double-click
action be unrelated to the single-click action. What do you do?

Well, one thing you could do is to do nothing on receipt
of the WM_LBUTTONDOWN

message aside from set a timer to fire
in
GetDoubleClickTime() milliseconds.
[Corrected

10am.]
If you get a WM_LBUTTONDBLCLK message within that time,
then it was a double-

click after all. If you don’t, then
it must have been a single-click, so you can do your single-

click
action (although a bit late).

This “wait a tick” technique is also necessary if you don’t
have a double-click action, but the

second click causes trouble
in conjunction with the first click. Why is this necessary?
Because

many users double-click everything.
Here are some examples of where the “delayed action to

avoid
the second click” can be seen:

https://devblogs.microsoft.com/oldnewthing/20041015-00/?p=37553
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/userinput/mouseinput/aboutmouseinput.asp
http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/userinput/mouseinput/mouseinputreference/mouseinputfunctions/getdoubleclicktime.asp


2/3

The context menu that appears for taskbar notification
icons. If the context menu

appeared immediately upon the first click,
then the second click would dismiss the

context menu, leaving the
user confused. “I clicked and something happened and then

it went
away.” (Users don’t say “I double-clicked”; they just say that they
clicked.

Double-click is the only thing they know how to do, so they
just call it “click”. For the

same reason you don’t say “I drove my
blue car” if you have only one car.)

If Explorer is in one-click mode, it waits to see if there is a second
click, and if so, it

ignores it. Otherwise, when people double-click,
they launch two copies of the program.

Furthermore, if you suppress the second click but don’t wait a tick,
then the program

they launched gets stuck behind
the Explorer window, since the user clicked on

Explorer after launching
the program.

The XP style Start button ignores the second click.
Otherwise, when people double-click

the Start button, the first
click would open the Start menu and the second click would

dismiss it!
(This is sometimes known as “debouncing”.)

Let’s demonstrate how you might implement click delay.
Start with
the scratch program and

add the following:

void CALLBACK DelayedSingleClick(HWND hwnd, UINT,

                                UINT_PTR id, DWORD)

{

   KillTimer(hwnd, id);

   MessageBeep(MB_OK);

}

void OnLButtonDown(HWND hwnd, BOOL fDoubleClick,

                  int x, int y, UINT keyFlags)

{

   if (fDoubleClick) {

       KillTimer(hwnd, 1);

       MessageBeep(MB_ICONASTERISK);

   } else {

       SetTimer(hwnd, 1, GetDoubleClickTime(),

                DelayedSingleClick);

   }

}

   HANDLE_MSG(hwnd, WM_LBUTTONDOWN, OnLButtonDown);

   HANDLE_MSG(hwnd, WM_LBUTTONDBLCLK, OnLButtonDown);


Also, since we’re messing with double clicks, we should turn them on:

   wc.style = CS_DBLCLKS;


http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx


3/3

When you run this program, click and double-click in the client
area. Notice that the program

doesn’t react to the single click
until after your double-click timeout has elapsed, because it’s

waiting to see if you are going to continue to click a second time
(and therefore double-click

instead of single-click).

Next time, we’ll look at clicks beyond two.

Raymond Chen

Follow







http://blogs.msdn.com/oldnewthing/archive/2004/10/18/243925.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

