
1/11

October 6, 2004

How to host an IContextMenu, part 10 – Composite
extensions – groundwork

devblogs.microsoft.com/oldnewthing/20041006-00

Raymond Chen

You might wonder why
the IContextMenu interface
operates on menu identifier offsets so

much
rather than with the menu identifiers themselves.

The reason is to support something which I will call “compositing”.

You may have multiple context menu extensions that you want to
combine into one giant

context menu extension. The shell does this
all over the place. For example, the context menu

we have been
playing with all this time is really a composite of several
individual context

menu extensions: the static registry verbs
plus all the COM-based extensions like “Send To”,

“Open With”,
and anything else that may have been added by a program you installed
(like a

virus checker).

So before we can write a compositor, we need to have a second context menu to composite.

Here’s a quickie that
implements two commands, let’s call them “Top” and “Next” for lack
of

anything interesting to do.

https://devblogs.microsoft.com/oldnewthing/20041006-00/?p=37643
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu/icontextmenu.asp

2/11

class CTopContextMenu : public IContextMenu

{

public:

 // *** IUnknown ***

 STDMETHODIMP QueryInterface(REFIID riid, void **ppv);

 STDMETHODIMP_(ULONG) AddRef();

 STDMETHODIMP_(ULONG) Release();

 // *** IContextMenu ***

 STDMETHODIMP QueryContextMenu(HMENU hmenu,

 UINT indexMenu, UINT idCmdFirst,

 UINT idCmdLast, UINT uFlags);

 STDMETHODIMP InvokeCommand(

 LPCMINVOKECOMMANDINFO lpici);

 STDMETHODIMP GetCommandString(

 UINT_PTR idCmd,

 UINT uType,

 UINT * pwReserved,

 LPSTR pszName,

 UINT cchMax);

 static HRESULT Create(REFIID riid, void **ppv);

private:

 CTopContextMenu() : m_cRef(1), m_cids(0) { }

private:

 HRESULT ValidateCommand(UINT_PTR idCmd, BOOL fUnicode,

 UINT *puOffset);

 HRESULT Top(LPCMINVOKECOMMANDINFO lpici);

 HRESULT Next(LPCMINVOKECOMMANDINFO lpici);

private:

 ULONG m_cRef;

 UINT m_cids;

};

The class declaration isn’t particularly interesting. We
are not owner-draw so we don’t bother

implementing
 IContextMenu2 or
 IContextMenu3 .

First, some basic paperwork for getting off the ground.

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu2/icontextmenu2.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu3/icontextmenu3.asp

3/11

HRESULT CTopContextMenu::Create(REFIID riid, void **ppv)

{

 *ppv = NULL;

 HRESULT hr;

 CTopContextMenu *self = new CTopContextMenu();

 if (self) {

 hr = self->QueryInterface(riid, ppv);

 self->Release();

 } else {

 hr = E_OUTOFMEMORY;

 }

 return hr;

}

We have two commands. Instead of hard-coding the numbers
 0 and 1 ,
let’s give them nice

names.

#define TOPCMD_TOP 0

#define TOPCMD_NEXT 1

#define TOPCMD_MAX 2

And here’s a table that we’re going to use to help us manage
these two commands.

const struct COMMANDINFO {

 LPCSTR pszNameA;

 LPCWSTR pszNameW;

 LPCSTR pszHelpA;

 LPCWSTR pszHelpW;

} c_rgciTop[] = {

 { “top”, L”top”,

 “The top command”, L”The top command”, }, // TOPCMD_TOP

 { “next”, L”next”,

 “The next command”, L”The next command”, },// TOPCMD_NEXT

};

Our TOPCMD_*
values conveniently double as indices into the
 c_rgciTop array.

Next come the boring parts of a COM object:

4/11

HRESULT CTopContextMenu::QueryInterface(REFIID riid, void **ppv)

{

 IUnknown *punk = NULL;

 if (riid == IID_IUnknown) {

 punk = static_cast<IUnknown*>(this);

 } else if (riid == IID_IContextMenu) {

 punk = static_cast<IContextMenu*>(this);

 }

 *ppv = punk;

 if (punk) {

 punk->AddRef();

 return S_OK;

 } else {

 return E_NOINTERFACE;

 }

}

ULONG CTopContextMenu::AddRef()

{

 return ++m_cRef;

}

ULONG CTopContextMenu::Release()

{

 ULONG cRef = –m_cRef;

 if (cRef == 0) delete this;

 return cRef;

}

Finally, we get to something interesting:
 IContextMenu::QueryContextMenu .
Things to

watch out for in the code below:

Checking whether there is room between
 idCmdFirst and
 idCmdLast is

complicated by the fact that
 idCmdLast is
endpoint-inclusive, which forces a strange

+1 .
Another reason to
prefer endpoint-exclusive ranges.

If the CMF_DEFAULTONLY flag is set, then we don’t bother
adding our menu items since

none of our options is the default
menu item.

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu/querycontextmenu.asp
https://devblogs.microsoft.com/oldnewthing/archive/2004/02/18/75652.aspx

5/11

HRESULT CTopContextMenu::QueryContextMenu(

 HMENU hmenu, UINT indexMenu, UINT idCmdFirst,

 UINT idCmdLast, UINT uFlags)

{

 m_cids = 0;

 if ((int)(idCmdLast – idCmdFirst + 1) >= TOPCMD_MAX &&

 !(uFlags & CMF_DEFAULTONLY)) {

 InsertMenu(hmenu, indexMenu + TOPCMD_TOP, MF_BYPOSITION,

 idCmdFirst + TOPCMD_TOP, TEXT(“Top”));

 InsertMenu(hmenu, indexMenu + TOPCMD_NEXT, MF_BYPOSITION,

 idCmdFirst + TOPCMD_NEXT, TEXT(“Next”));

 m_cids = TOPCMD_MAX;

 }

 return MAKE_HRESULT(SEVERITY_SUCCESS, 0, m_cids);

}

In order to implement the next few methods, we need to have
some culture-invariant

comparison functions.

int strcmpiA_invariant(LPCSTR psz1, LPCSTR psz2)

{

 return CompareStringA(LOCALE_INVARIANT, NORM_IGNORECASE,

 psz1, -1, psz2, -1) – CSTR_EQUAL;

}

int strcmpiW_invariant(LPCWSTR psz1, LPCWSTR psz2)

{

 return CompareStringW(LOCALE_INVARIANT, NORM_IGNORECASE,

 psz1, -1, psz2, -1) – CSTR_EQUAL;

}

These are like the strcmpi functions except that they
use the invariant locale since they will

be used to compare
canonical strings rather than strings that are meaningful to
an end user.

(More discussion here in MSDN.)

Now we have enough to write a helper function which is
central to the context menu:

Figuring out which command
somebody is talking about.

Commands can be passed to the IContextMenu interface either
(a) by ordinal or by name,

and either (b) as ANSI or
as Unicode. This counts as either three ways or four ways,

depending on whether you treat “ANSI as ordinal” and “Unicode
as ordinal” as the same

thing or not.

http://msdn.microsoft.com/library/en-us/winui/winui/windowsuserinterface/resources/strings/stringreference/stringfunctions/comparestring.asp

6/11

HRESULT CTopContextMenu::ValidateCommand(UINT_PTR idCmd,

 BOOL fUnicode, UINT *puOffset)

{

 if (!IS_INTRESOURCE(idCmd)) {

 if (fUnicode) {

 LPCWSTR pszMatch = (LPCWSTR)idCmd;

 for (idCmd = 0; idCmd < TOPCMD_MAX; idCmd++) {

 if (strcmpiW_invariant(pszMatch,

 c_rgciTop[idCmd].pszNameW) == 0) {

 break;

 }

 }

 } else {

 LPCSTR pszMatch = (LPCSTR)idCmd;

 for (idCmd = 0; idCmd < TOPCMD_MAX; idCmd++) {

 if (strcmpiA_invariant(pszMatch,

 c_rgciTop[idCmd].pszNameA) == 0) {

 break;

 }

 }

 }

 }

 if (idCmd < m_cids) {

 *puOffset = (UINT)idCmd;

 return S_OK;

 }

 return E_INVALIDARG;

}

This helper function takes a “something” parameter in the
form of a UINT_PTR and a flag

that indicates whether that
“something” is ANSI or Unicode. The function itself checks

whether the “something” is a string or an ordinal. If a string,
then it converts that string into

an ordinal by looking for
it in the table of commands in the appropriate character set
and

using a locale-insensitive comparison.
Notice that if the string is not found, then
 idCmd is

left equal to TOPCMD_MAX ,
which is an invalid value (and therefore is neatly handled
by the

fall-through).

After the (possibly failed) conversion to an ordinal, the
ordinal is checked for validity; if

valid, then the ordinal
is returned back for further processing.

With this helper function the implementation of the other methods
of the IContextMenu

interface are a lot easier.

We continue with the IContextMenu::InvokeCommand method:

7/11

HRESULT CTopContextMenu::InvokeCommand(

 LPCMINVOKECOMMANDINFO lpici) {

 CMINVOKECOMMANDINFOEX* lpicix = (CMINVOKECOMMANDINFOEX*)lpici;

 BOOL fUnicode = lpici->cbSize >= sizeof(CMINVOKECOMMANDINFOEX) &&

 (lpici->fMask & CMIC_MASK_UNICODE);

 UINT idCmd;

 HRESULT hr = ValidateCommand(fUnicode ? (UINT_PTR)lpicix->lpVerbW

 : (UINT_PTR)lpici->lpVerb,

 fUnicode, &idCmd);

 if (SUCCEEDED(hr)) {

 switch (idCmd) {

 case TOPCMD_TOP: hr = Top(lpici); break;

 case TOPCMD_NEXT: hr = Next(lpici); break;

 default: hr = E_INVALIDARG; break;

 }

 }

 return hr;

}

Here is a case where the “Are there three cases or four?” question
lands squarely on the side

of “four”. There are two forms of the
 CMINVOKECOMMANDINFO structure, the base structure

(which is
ANSI-only) and the extended structure
 CMINVOKECOMMANDINFOEX which adds

Unicode support.

If the structure is CMINVOKECOMMANDINFOEX and the
 CMIC_MASK_UNICODE flag is set, then

the Unicode fields
of the CMINVOKECOMMANDINFOEX structure should be used
in preference

to the ANSI ones.

This means that there are indeed four scenarios:

1. ANSI string in lpVerb member.

2. Ordinal in lpVerb member.

3. Unicode string in lpVerbW member.

4. Ordinal in lpVerbW member.

After figuring out whether the parameter is ANSI or Unicode,
we ask ValidateCommand to

do the work of validating
the verb and converting it to an ordinal, at which point we use
the

ordinal in a switch statement to dispatch the
actual operation.

Failing to implement string-based command invocation is an
extremely common oversight in

context menu implementations.
Doing so prevents people from invoking
your verbs

programmatically.

“Why should I bother to let
people invoke my verbs programmatically?”

8/11

Because if you don’t,
then people won’t be able to write programs like the one we are

developing in this series of articles! For example, suppose
your context menu extension lets

people “Frob” a file. If you
don’t expose this verb programmability, then it is impossible to

write
a program that, say, takes all the files modified in the last
twenty-four hours and Frobs

them.

(I’m always amused by the people who complain
that Explorer doesn’t expose enough

customizability
programmatically,
while simultaneously not providing the same degree of

programmatic customizability
in their own programs.)

Oh wait, I guess I should implement those two operations.
They don’t do anything

particularly interesting.

HRESULT CTopContextMenu::Top(LPCMINVOKECOMMANDINFO lpici)

{

 MessageBox(lpici->hwnd, TEXT(“Top”), TEXT(“Title”), MB_OK);

 return S_OK;

}

HRESULT CTopContextMenu::Next(LPCMINVOKECOMMANDINFO lpici)

{

 MessageBox(lpici->hwnd, TEXT(“Next”), TEXT(“Title”), MB_OK);

 return S_OK;

}

The remaining method is
 IContextMenu::GetCommandString , which is probably
the one

people most frequently get wrong since the consequences of
getting it wrong are not

immediately visible to the implementor.
It is the people who are trying to access the context

menu
programmatically who most likely to notice that the method isn’t
working properly.

9/11

HRESULT CTopContextMenu::GetCommandString(

 UINT_PTR idCmd,

 UINT uType,

 UINT * pwReserved,

 LPSTR pszName,

 UINT cchMax)

{

 UINT id;

 HRESULT hr = ValidateCommand(idCmd, uType & GCS_UNICODE, &id);

 if (FAILED(hr)) {

 if (uType == GCS_VALIDATEA || uType == GCS_VALIDATEW) {

 hr = S_FALSE;

 }

 return hr;

 }

 switch (uType) {

 case GCS_VERBA:

 lstrcpynA(pszName, c_rgciTop[id].pszNameA, cchMax);

 return S_OK;

 case GCS_VERBW:

 lstrcpynW((LPWSTR)pszName, c_rgciTop[id].pszNameW, cchMax);

 return S_OK;

 case GCS_HELPTEXTA:

 lstrcpynA(pszName, c_rgciTop[id].pszHelpA, cchMax);

 return S_OK;

 case GCS_HELPTEXTW:

 lstrcpynW((LPWSTR)pszName, c_rgciTop[id].pszHelpW, cchMax);

 return S_OK;

 case GCS_VALIDATEA:

 case GCS_VALIDATEW:

 return S_OK; // all they wanted was validation

 }

 return E_NOTIMPL;

}

Here again we use the
 ValidateCommand method to do the hard work
of validating the

command, which is passed in the
 idCmd parameter, with interpretive assistance
in the

GCS_UNICODE flag of the uType
parameter.

10/11

If the command is not valid, then we propagate the error code,
except in the GCS_VALIDATE

cases, where the documentation
says that we should return S_FALSE to indicate that
the

command is not valid.

If the command is valid, we return the requested
information, which is handled by a simple

switch
statement.

Okay, now that we have this context menu, we can even test it
out a little bit. Throw out the

changes from
part 9
and return to the program as it was in
part 6, making the following

change to the
 OnContextMenu function:

void OnContextMenu(HWND hwnd, HWND hwndContext, int xPos, int yPos)

{

 POINT pt = { xPos, yPos };

 if (pt.x == -1 && pt.y == -1) {

 pt.x = pt.y = 0;

 ClientToScreen(hwnd, &pt);

 }

 IContextMenu *pcm;

 if (SUCCEEDED(CTopContextMenu::Create(

 IID_IContextMenu, (void**)&pcm))) {

 …

We now obtain our context menu not by calling
the GetUIObjectOfFile function but

rather
by constructing a CTopContextMenu object.
Since our CTopContextMenu

implements
 IContextMenu , all the remaining code can be
left unchanged.

When you run this program, observe that even the help text works.

Ah, one of the powers of operating with interfaces rather than
objects: You can swap out the

object and the rest of the code
doesn’t even realize what happened, so long as the interface

stays
the same.

Okay, today was a long day spent just laying groundwork,
just writing what has to be written.

No breakthroughs,
no “aha” moments, just typing. Read the method, understand
what you

have to do, and do it.

Next time, we’re going to see context menu composition,
using this context menu as one of

the components.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/archive/2004/10/04/237507.aspx
https://devblogs.microsoft.com/oldnewthing/archive/2004/09/28/235242.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/10/07/239197.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

11/11

