
1/3

October 5, 2004

The macros for declaring and implementing COM
interfaces

devblogs.microsoft.com/oldnewthing/20041005-00

Raymond Chen

There are two ways of declaring COM interfaces, the hard way
and the easy way.

The easy way is to use an IDL file and let the MIDL compiler
generate your COM interface for

you.
If you let MIDL do the work, then you also get
__uuidof support at no extra charge,

which is a very nice bonus.

The hard way is to do it all by hand. If you choose this route,
your interface will look

something like this:

#undef INTERFACE

#define INTERFACE ISample2

DECLARE_INTERFACE_(ISample2, ISample)

{

 BEGIN_INTERFACE

 // *** IUnknown methods ***

 STDMETHOD(QueryInterface)(THIS_ REFIID riid, void **ppv) PURE;

 STDMETHOD_(ULONG,AddRef)(THIS) PURE;

 STDMETHOD_(ULONG,Release)(THIS) PURE;

 // ** ISample methods ***

 STDMETHOD(Method1)(THIS) PURE;

 STDMETHOD_(int, Method2)(THIS) PURE;

 // *** ISample2 methods ***

 STDMETHOD(Method3)(THIS_ int iParameter) PURE;

 STDMETHOD_(int, Method4)(THIS_ int iParameter) PURE;

 END_INTERFACE

};

https://devblogs.microsoft.com/oldnewthing/20041005-00/?p=37653
http://msdn.microsoft.com/library/en-us/vccelng/htm/key_s-z_7.asp

2/3

What are the rules?

You must set
the INTERFACE macro to the name of the interface being
declared.
Note

that you need to #undef any previous value before you
 #define the new one.

You must use the DECLARE_INTERFACE
and DECLARE_INTERFACE_ macros
to

generate the preliminary bookkeeping for an interface.
Use DECLARE_INTERFACE for

interfaces that have no base class
and DECLARE_INTERFACE_ for interfaces that
derive

from some other interface. In our example, we
derive the ISample2 interface from

ISample .
Note: In practice, you will never find
the plain DECLARE_INTERFACE

macro because all interfaces
derive from IUnknown if nothing else.

You must list all the methods of the base interfaces in exactly
the same order that they

are listed by that base interface;
the methods that you are adding in the new interface

must go last.

You must use the STDMETHOD or STDMETHOD_
macros to declare the
methods. Use

STDMETHOD if the return value is
 HRESULT and
 STDMETHOD_ if the return value is

some other type.

If your method has no parameters, then the argument list must
be (THIS) .
Otherwise,

you must insert THIS_ immediately after
the open-parenthesis of the parameter list.

After the parameter list and before the semicolon,
you must say PURE .

Inside the curly braces, you must say
 BEGIN_INTERFACE and
 END_INTERFACE .

There is a reason for each of these rules. They have to do with
being able to use the same

header for both C and C++ declarations
and with interoperability with different compilers

and platforms.

You must set the INTERFACE macro because its value is used
by the THIS and

THIS_ macros later.

You must use one of the DECLARE_INTERFACE* macros to ensure that
the correct

prologue is emitted for both C and C++.
For C, a vtable structure is declared, whereas

for C++
the compiler handles the vtable automatically; on the other hand,
since C++

has inheritance, the macros need to specify the base
class so that upcasting will work.

You must list the base class methods in exactly the same order
as in the original

declarations so that the C vtable structure
for your derived class matches the structure

for the base class
for the extent that they overlap. This is required to preserve
the COM

rule that a derived interface can be used as a base
interface.

You must use the STDMETHOD and
 STDMETHOD_ macros to ensure that
the correct

calling conventions are declared for the function
prototypes.
For C, the macro creates a

function pointer in the vtable;
for C++, the macro creates a virtual function.

The THIS and THIS_ macros
are used so that the C declaration
explicitly declares

the “this” parameter which in C++ is implied.
Different versions are needed depending

on the number of parameters
so that a spurious trailing comma
is not generated in the

zero-parameter case.

3/3

The word PURE ensures that the C++ virtual function is pure,
because one of the

defining characteristics of COM interfaces
is that all methods are pure virtual.

The BEGIN_INTERFACE and
 END_INTERFACE macros
emit compiler-specific goo

which the compiler vendor provides
in order to ensure that the generated interface

matches
the COM vtable layout rules.
Different compilers have historically required

different goo,
though the need for goo is gradually disappearing over time.

And you wonder why I called it “the hard way”.

Similar rules apply when you are implementing an interface.
Use the STDMETHODIMP and

STDMETHODIMP_ macros to declare your
implementations so that they get the proper calling

convention
attached to them.
We’ll see examples of this
next time.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2004/02/05/68017.aspx
http://blogs.msdn.com/oldnewthing/archive/2004/10/06/238630.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

