
1/4

September 20, 2004

How to host an IContextMenu, part 1 – Initial foray
devblogs.microsoft.com/oldnewthing/20040920-00

Raymond Chen

Most documentation describes how to plug into the shell
context menu structure and be a

context menu provider. If you
read the documentation from the other side,
then you also see

how to host the context menu.
(This is the first of an eleven-part series with three

digressions.
Yes, eleven parts—sorry for all you folks who are in it just
for the history articles.

I’ll try to toss in an occasional
amusing diversion.)

The usage pattern for an IContextMenu is as follows:

Creation.

IContextMenu::QueryContextMenu.
This initializes the context menu.
During this call,

the context menu decides which items appear in it,
based on the flags you pass.

Display the menu or otherwise select a command to execute,
using

IContextMenu::GetCommandString,
IContextMenu2::HandleMenuMsg and

IContextMenu3::HandleMenuMsg2 to faciliate the user interaction.

IContextMenu::InvokeCommand.
This executes the command.

The details of this are explained in
Creating Context MenuHandlers from the point of view of

the IContextMenu implementor.

The Shell first calls IContextMenu::QueryContextMenu.
It passes in an HMENU handle that
the method
can use to add items to the context menu.
If the user selects one of the commands,
IContextMenu::GetCommandString
is called to retrieve the Help string
that will be displayed
on the Microsoft Windows Explorer status bar.
If the user clicks one of the handler’s items,
the
Shell calls IContextMenu::InvokeCommand.
The handler can then execute the appropriate
command.

Read it from the other side to see what it says you need to
do as the IContextMenu host:

https://devblogs.microsoft.com/oldnewthing/20040920-00/?p=37823
https://devblogs.microsoft.com/oldnewthing/archive/2003/12/26/45979.aspx
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu/QueryContextMenu.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu/GetCommandString.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu2/handlemenumsg.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu3/handlemenumsg2.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/icontextmenu/InvokeCommand.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/programmersguide/shell_int/shell_int_extending/extensionhandlers/contextmenuhandlers.asp
https://devblogs.microsoft.com/oldnewthing/archive/2003/12/26/45979.aspx


2/4

The IContextMenu host first calls IContextMenu::QueryContextMenu.
It passes in an HMENU
handle that the method
can use to add items to the context menu.
If the user selects one of the
commands,
IContextMenu::GetCommandString
is called to retrieve the Help string
that will be
displayed on the host’s status bar.
If the user clicks one of the handler’s items,
the IContextMenu
host calls IContextMenu::InvokeCommand.
The handler can then execute the appropriate
command.

Exploring the consequences of this new interpretation of the
context menu documentation

will be our focus for the next few weeks.

Okay, let’s get started.
We begin, as always, with
our scratch program.
I’m going to assume

you’re already familiar with the shell namespace
and pidls so I can focus on the context menu

part of the issue.

#include <shlobj.h>

HRESULT GetUIObjectOfFile(HWND hwnd, LPCWSTR pszPath, REFIID riid, void **ppv)

{

 *ppv = NULL;

 HRESULT hr;

 LPITEMIDLIST pidl;

 SFGAOF sfgao;

 if (SUCCEEDED(hr = SHParseDisplayName(pszPath, NULL, &pidl, 0, &sfgao))) {

   IShellFolder *psf;

   LPCITEMIDLIST pidlChild;

   if (SUCCEEDED(hr = SHBindToParent(pidl, IID_IShellFolder,

                                     (void**)&psf, &pidlChild))) {

     hr = psf->GetUIObjectOf(hwnd, 1, &pidlChild, riid, NULL, ppv);

     psf->Release();

   }

   CoTaskMemFree(pidl);

 }

 return hr;

}


This simple function takes a path and gets a shell UI object from it.
We convert the path to a

pidl with
SHParseDisplayName,
then bind to the pidl’s parent with
SHBindToParent, then

ask the parent
for the UI object of the child with
IShellFolder::GetUIObjectOf.
I’m assuming

you’ve had enough experience with the namespace that
this is ho-hum.

(The helper functions SHParseDisplayName and SHBindToParent don’t
do anything you

couldn’t have done yourself. They just save you
some typing. Once you start using the shell

namespace
for any nontrivial amount of time, you build up a library of little
functions like

these.)

https://devblogs.microsoft.com/oldnewthing/archive/2003/07/23/54576.aspx
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shparsedisplayname.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shbindtoparent.asp
http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/ifaces/ishellfolder/getuiobjectof.asp


3/4

For our first pass, all we’re going to do is invoke the “Play” verb
on the file when the user

right-clicks. (Why right-click?
Because a future version of this program will display a context

menu.)

#define SCRATCH_QCM_FIRST 1

#define SCRATCH_QCM_LAST  0x7FFF

void OnContextMenu(HWND hwnd, HWND hwndContext, UINT xPos, UINT yPos)

{

 IContextMenu *pcm;

 if (SUCCEEDED(GetUIObjectOfFile(hwnd, L”C:\\Windows\\clock.avi”,

                  IID_IContextMenu, (void**)&pcm))) {

   HMENU hmenu = CreatePopupMenu();

   if (hmenu) {

     if (SUCCEEDED(pcm->QueryContextMenu(hmenu, 0,

                            SCRATCH_QCM_FIRST, SCRATCH_QCM_LAST,

                            CMF_NORMAL))) {

       CMINVOKECOMMANDINFO info = { 0 };

       info.cbSize = sizeof(info);

       info.hwnd = hwnd;

       info.lpVerb = “play”;

       pcm->InvokeCommand(&info);

     }

     DestroyMenu(hmenu);

   }

   pcm->Release();

 }

}

   HANDLE_MSG(hwnd, WM_CONTEXTMENU, OnContextMenu);


As noted in the checklist above, first we create the IContextMenu,
then initialize it by calling

IContextMenu::QueryContextMenu.
Notice that even though we don’t intend to display the

menu,
we still have to create a popup menu because
IContextMenu::QueryContextMenu

requires on.
We don’t actually display the resulting menu, however;
instead of asking the

user to pick an item from the menu,
we make the choice for the user and select “Play”,
filling

in
the CMINVOKECOMMANDINFO structure and
invoking it.

But how did we know that the correct verb was “Play”?
In this case, we knew because we

hard-coded the file
to “clock.avi” and we knew that AVI files have a “Play” verb.
But of course

that doesn’t work in general.
Before getting to invoking the default verb, let’s
first take the

easier step of asking the user what
verb to invoke. That exercise will actually distract us
for a

while, but we’ll come back to the issue of the
default verb afterwards.

http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/structures/cminvokecommandinfo.asp


4/4

If the code above is all you really wanted (invoking a fixed
verb on a file), then you didn’t

need to go through all the
context menu stuff.
The code above is equivalent to calling
the

ShellExecuteEx function,
passing the SEE_MASK_INVOKEIDLIST flag to indicate that you

want the invoke to go through the IContextMenu.

[Typo fixed 25 September.]

Raymond Chen

Follow







http://msdn.microsoft.com/library/en-us/shellcc/platform/shell/reference/functions/shellexecuteex.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

