
1/4

September 15, 2004

Interlocked operations don’t solve everything
devblogs.microsoft.com/oldnewthing/20040915-00

Raymond Chen

Interlocked operations
are a high-performance way of updating DWORD-sized
or pointer-

sized values in an atomic manner.
Note, however, that this doesn’t mean that you can avoid

the critical section.

For example, suppose you have a critical section that protects
a variable, and in some other

part of the code, you want to
update the variable atomically. “Well,” you say,
“this is a simple

imcrement, so I can skip the critical section
and just do a direct InterlockedIncrement. Woo-

hoo, I avoided
the critical section bottleneck.”

Well, except that the purpose of that critical section was to
ensure that nobody changed the

value of the variable while the
protected section of code was running. You just ran in and

changed the value behind that code’s back.

Conversely, some people suggested emulating complex interlocked operations
by having a

critical section whose job it was to protect the variable.
For example, you might have an

InterlockedMultiply that goes like this:

// Wrong!

LONG InterlockedMultiply(volatile LONG *plMultiplicand, LONG lMultiplier)

{

 EnterCriticalSection(&SomeCriticalSection);

 LONG lResult = *plMultiplicand *= lMultiplier;

 LeaveCriticalSection(&SomeCriticalSection);

 return lResult;

}

While this code does protect against two threads performing an
InterlockedMultiply against

the same variable simultaneously,
it fails to protect against other code performing a simple

atomic write to the variable. Consider the following:

https://devblogs.microsoft.com/oldnewthing/20040915-00/?p=37863
http://msdn.microsoft.com/library/en-us/dllproc/base/interlocked_variable_access.asp

2/4

int x = 2;

Thread1()

{

 InterlockedIncrement(&x);

}

Thread2()

{

 InterlockedMultiply(&x, 5);

}

If the InterlockedMultiply were truly interlocked,
the only valid results would be x=15 (if the

interlocked
increment beat the interlocked multiply)
or x=11 (if the interlocked multiply beat

the interlocked
increment).
But since it isn’t truly interlocked, you can get other
weird values:

Thread 1 Thread 2

x = 2 at start

InterlockedMultiply(&x, 5)

EnterCriticalSection

load x (loads 2)

InterlockedIncrement(&x);

x is now 3

multiply by 5 (result: 10)

store x (stores 10)

LeaveCriticalSection

x = 10 at end

Oh no, our interlocked multiply isn’t very interlocked after all!
How can we fix it?

If the operation you want to perform is a function solely of the
starting numerical value and

the other function parameters
(with no dependencies on any other memory locations), you

can
write your own interlocked-style operation with the help of

InterlockedCompareExchange.

http://msdn.microsoft.com/library/en-us/dllproc/base/interlockedcompareexchange.asp

3/4

LONG InterlockedMultiply(volatile LONG *plMultiplicand, LONG lMultiplier)

{

 LONG lOriginal, lResult;

 do {

 lOriginal = *plMultiplicand;

 lResult = lOriginal * lMultiplier;

 } while (InterlockedCompareExchange(plMultiplicand,

 lResult, lOriginal) != lOriginal);

 return lResult;

}

[Typo in algorithm fixed 9:00am.]

To perform a complicated function on the multiplicand, we perform
three steps.

First, capture the value from memory:
 lOriginal = *plMultiplicand;

Second, compute the desired result from the captured value:
 lResult = lOriginal *

lMultiplier;

Third, store the result provided the value in memory has not changed:

InterlockedCompareExchange(plMultiplicand, lResult, lOriginal)

If the value did change, then this means that the interlocked operation
was unsucessful

because somebody else changed the value while we were
busy doing our computation. In that

case, loop back and try again.

If you walk through the scenario above with this new InterlockedMultiply
function, you will

see that after the interloping InterlockedIncrement,
the loop will detect that the value of “x”

has changed and restart.
Since the final update of “x” is performed by an

InterlockedCompareExchange
operation, the result of the computation is trusted
only if “x”

did not change value.

Note that this technique works only if the
operation being performed is a pure function of

the memory value
and the function parameters. If you have to access other memory
as part of

the computation, then this technique will not work!
That’s because those other memory

locations might have changed
during the computation and you would have no way of

knowing, since
InterlockedCompareExchange checks only the memory value being
updated.

Failure to heed the above note results in problems such as the
so-called “ABA Problem”.
I’ll

leave you to google on that term and read about it.
Fortunately, everybody who talks about it

also talks about how
to solve the ABA Problem, so I’ll leave you to
read that, too.

Once you’ve read about the ABA Problem and its solution,
you should be aware that the

solution has already been
implemented for you, via the
Interlocked SList functions.

Raymond Chen

http://msdn.microsoft.com/library/en-us/dllproc/base/interlocked_singly_linked_lists.asp
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

