
1/2

September 10, 2004

Sometimes the bug isn’t apparent until late in the game
devblogs.microsoft.com/oldnewthing/20040910-00

Raymond Chen

I didn’t debug it personally, but I know the people who did. During Windows XP

development, a bug arrived on a computer game that crashed only after you got to one of the

higher levels.

After many saved and restored games, the problem was finally identified.

The program does its video work in an offscreen buffer and transfers it to the screen when it’s

done. When it draws text with a shadow, it first draws the text in black, offset down one and

right one pixel, then draws it again in the foreground color.

So far so good.

Except that it didn’t check whether moving down and right one pixel was going to go beyond

the end of the screen buffer.

That’s why it took until one of the higher levels before the bug manifested itself. Not until

then did you accomplish a mission whose name contained a lowercase letter with a

descender! Shifting the descender down one pixel caused the bottom row of pixels in the

character to extend past the video buffer and start corrupting memory.

Once the problem was identified, fixing it was comparatively easy. The application

compatibility team has a bag of tricks, and one of them is called “HeapPadAllocation”. This

particular compatibility fix adds padding to every heap allocation so that when a program

overruns a heap buffer, all that gets corrupted is the padding. Enable that fix for the bad

program (specifying the amount of padding necessary, in this case, one row’s worth of

pixels), and run through the game again. No crash this time.

What made this interesting to me was that you had to play the game for hours before the

bug finally surfaced.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20040910-00/?p=37903
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


2/2








