
1/3

August 26, 2004

Why do some structures end with an array of size 1?
devblogs.microsoft.com/oldnewthing/20040826-00

Raymond Chen

Some Windows structures are variable-sized,
beginning with a fixed header, followed by
a

variable-sized array. When these structures
are declared,
they often declare an array of size 1

where the
variable-sized array should be.
For example:

typedef struct _TOKEN_GROUPS {

 DWORD GroupCount;

 SID_AND_ATTRIBUTES Groups[ANYSIZE_ARRAY];

} TOKEN_GROUPS, *PTOKEN_GROUPS;

If you look in the header files, you’ll see that ANYSIZE_ARRAY is
#define’d to 1, so this

declares a structure with a trailing array
of size one.

With this declaration, you would allocate memory for one such
variable-sized

TOKEN_GROUPS structure like this:

PTOKEN_GROUPS TokenGroups =

 malloc(FIELD_OFFSET(TOKEN_GROUPS, Groups[NumberOfGroups]));

and you would initialize the structure like this:

TokenGroups->GroupCount = NumberOfGroups;

for (DWORD Index = 0; Index = NumberOfGroups; Index++) {

 TokenGroups->Groups[Index] = …;

}

Many people think it should have been declared like this:

typedef struct _TOKEN_GROUPS {

 DWORD GroupCount;

} TOKEN_GROUPS, *PTOKEN_GROUPS;

(In this article, code that is wrong or hypothetical
will be italicized.)

The code that does the allocation would then go like this:

https://devblogs.microsoft.com/oldnewthing/20040826-00/?p=38043

2/3

PTOKEN_GROUPS TokenGroups =

 malloc(sizeof(TOKEN_GROUPS) +

 NumberOfGroups * sizeof(SID_AND_ATTRIBUTES));

This alternative has two disadvantages, one cosmetic and one fatal.

First, the cosmetic disadvantage:
It makes it harder to access the variable-sized data.

Initializing the TOKEN_GROUPS just allocated would go like this:

TokenGroups->GroupCount = NumberOfGroups;

for (DWORD Index = 0; Index = NumberOfGroups; Index++) {

 ((SID_AND_ATTRIBUTES *)(TokenGroups + 1))[Index] = …;

}

The real disadvantage is fatal.
The above code crashes on 64-bit Windows.
The

SID_AND_ATTRIBUTES structure looks like this:

typedef struct _SID_AND_ATTRIBUTES {

 PSID Sid;

 DWORD Attributes;

 } SID_AND_ATTRIBUTES, * PSID_AND_ATTRIBUTES;

Observe that the first member of this structure is a pointer,
PSID. The

SID_AND_ATTRIBUTES structure requires pointer alignment,
which on 64-bit Windows is

8-byte alignment.
On the other hand, the proposed TOKEN_GROUPS structure
consists of

just a DWORD and therefore requires only 4-byte alignment.
sizeof(TOKEN_GROUPS) is

four.

I hope you see where this is going.

Under the proposed structure definition,
the array of SID_AND_ATTRIBUTES
structures

will not be placed on an 8-byte
boundary but only on a 4-byte boundary.
The necessary

padding between the GroupCount and the first
SID_AND_ATTRIBUTES is missing.
The

attempt to access the elements of the array will crash with a

STATUS_DATATYPE_MISALIGNMENT exception.

Okay, you may say, then why not use a zero-length array instead
of a 1-length array?

Because time travel has yet to be perfected.

Zero-length arrays did not become legal Standard C until 1999.
Since Windows was around

long before then, it could not take
advantage of that functionality in the C language.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3

