
1/2

August 25, 2004

Why can’t you treat a FILETIME as an __int64?
devblogs.microsoft.com/oldnewthing/20040825-00

Raymond Chen

The FILETIME structure represents a 64-bit value in two parts:

typedef struct _FILETIME {

 DWORD dwLowDateTime;

 DWORD dwHighDateTime;

} FILETIME, *PFILETIME;

You may be tempted to take the entire FILETIME structure
and access it directly
as if it were

an __int64 .
After all, its memory layout exactly matches
that of a 64-bit (little-endian)

integer.
Some people have written sample code that does exactly this:

pi = (__int64*)&ft; // WRONG

(*pi) += (__int64)num*datepart; // WRONG

Why is this wrong?

Alignment.

Since a FILETIME is a structure containing two
 DWORD s, it requires
only 4-byte alignment,

since that is sufficient to put
each DWORD
on a valid DWORD boundary.
There is no need for

the first DWORD
to reside on an 8-byte boundary. And in fact, you’ve probably already
used a

structure where it doesn’t:
The WIN32_FIND_DATA structure.

typedef struct _WIN32_FIND_DATA {

 DWORD dwFileAttributes;

 FILETIME ftCreationTime;

 FILETIME ftLastAccessTime;

 FILETIME ftLastWriteTime;

 DWORD nFileSizeHigh;

 DWORD nFileSizeLow;

 DWORD dwReserved0;

 DWORD dwReserved1;

 TCHAR cFileName[MAX_PATH];

 TCHAR cAlternateFileName[14];

} WIN32_FIND_DATA, *PWIN32_FIND_DATA, *LPWIN32_FIND_DATA;

https://devblogs.microsoft.com/oldnewthing/20040825-00/?p=38053
http://msdn.microsoft.com/library/en-us/sysinfo/base/filetime_str.asp
http://www.codeproject.com/datetime/winapi_datetime_ops.asp
http://msdn.microsoft.com/library/en-us/fileio/base/win32_find_data_str.asp

2/2

Observe that the three FILETIME structures appear at offsets 4,
12, and 20 from the

beginning of the structure. They have been
thrown off 8-byte alignment by the

dwFileAttributes member.

Casting a FILETIME to
an __int64 therefore can (and in the WIN32_FIND_DATA
case,

will) create a misaligned pointer.
Accessing a misaligned pointer will raise a

STATUS_DATATYPE_MISALIGNMENT exception on architectures which
require alignment.

Even if you are on a forgiving platform that
performs automatic alignment fixups, you can

still run into trouble.
More on this and other consequences of alignment in the next few

entries.

Exercise: Why are the
 LARGE_INTEGER and
 ULARGE_INTEGER structures not affected?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

